A277288 Positive integers k such that k divides 3^k + 5.
1, 2, 14, 1978, 38209, 4782974, 9581014, 244330711, 365496202, 1661392258, 116084432414, 288504187458218, 490179448388654, 802245996685561
Offset: 1
Examples
3^14 + 5 = 4782974 = 14 * 341641, so 14 is a term.
Crossrefs
Programs
-
PARI
is(n)=Mod(3,n)^n==-5; \\ Joerg Arndt, Oct 09 2016
-
Python
A277288_list = [1,2]+[n for n in range(3,10**6) if pow(3,n,n)==n-5] # Chai Wah Wu, Oct 09 2016
-
Sage
def A277288_list(search_limit): n, t, r = 1, Integer(3), [1] while n < search_limit: n += 1 t *= 3 if n.divides(t+5): r.append(n) return r # Peter Luschny, Oct 10 2016
Extensions
a(9) from Joerg Arndt, Oct 09 2016
a(10) from Chai Wah Wu, Oct 09 2016
a(11)-a(14) from Max Alekseyev, Oct 14 2016
Comments