Original entry on oeis.org
2, 14, 76, 378, 1808, 8484, 39446, 182732, 846248, 3926338, 18276832, 85436832, 401313288, 1894847846, 8994916236, 42931067910, 206002472336, 993664391720, 4817140123620, 23464959242520, 114820471485840, 564248307992850, 2783898831160512, 13786409317705920, 68509284536815640, 341538385855855064, 1707729163812908528
Offset: 1
-
{A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
for(n=1,30,print1(A277295(n+2,n-1),", "))
Original entry on oeis.org
0, 5, 76, 698, 5088, 32461, 189940, 1046190, 5511440, 28061890, 139089880, 674600980, 3213923072, 15084364221, 69904629316, 320443984742, 1455102018480, 6553035703798, 29296998868904, 130133568013164, 574698326054848, 2524813186117010, 11040163152179976, 48069234287414668, 208481908639356448, 900995206054983396, 3881108155492099760
Offset: 1
-
{A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
for(n=1,30,print1(A277295(n+2,2),", "))
A277298
Central terms of triangle A277295 in odd-indexed rows; a(n) = A277295(2*n-1,n-1).
Original entry on oeis.org
1, 2, 76, 5404, 535410, 66031704, 9583782716, 1584902128648, 292586323812088, 59462699504146980, 13171171610678351360, 3155802303880338506184, 813045290972961285049576, 224143228528852050484555760, 65850557807967931843625040120, 20543425063284611418233827507248, 6784261706348459523065200262509390
Offset: 1
-
{A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
for(n=1,20,print1(A277295(2*n-1,n-1),", "))
A277299
Central terms of triangle A277295 in even-indexed rows; a(n) = A277295(2*n,n-1).
Original entry on oeis.org
1, 14, 698, 56410, 6036632, 784844330, 118467338692, 20204403241014, 3825143045741850, 794096638401382028, 179152196191253429864, 43621984527307144281094, 11400895235718650585287660, 3183846191638117842792003252, 946381984098376099573619213864, 298412976572690317096982653746772
Offset: 1
-
{A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
for(n=1,20,print1(A277295(2*n,n-1),", "))
A213591
G.f. A(x) satisfies A( x - A(x)^2 ) = x.
Original entry on oeis.org
1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
-
terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1,21,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A275765
G.f. satisfies: A(x - A(x)^2) = x + A(x)^2.
Original entry on oeis.org
1, 2, 12, 106, 1148, 14156, 191400, 2775930, 42585412, 684496988, 11449962008, 198331811356, 3543990791480, 65136985937096, 1228531761076208, 23733123786608826, 468887742020767788, 9461919438245032500, 194817077269127033944, 4089069139317823277548, 87426000975842460304792, 1902787414323673070857528, 42133267254272433484761584, 948695717599714654940068604, 21712101305047777916075831096, 504865916349551192319293625016
Offset: 1
G.f.: A(x) = x + 2*x^2 + 12*x^3 + 106*x^4 + 1148*x^5 + 14156*x^6 + 191400*x^7 + 2775930*x^8 + 42585412*x^9 + 684496988*x^10 + 11449962008*x^11 + 198331811356*x^12 +...
such that A(x - A(x)^2) = x + A(x)^2.
RELATED SERIES.
Series_Reversion(x - A(x)^2) = x + x^2 + 6*x^3 + 53*x^4 + 574*x^5 + 7078*x^6 + 95700*x^7 + 1387965*x^8 + 21292706*x^9 + 342248494*x^10 +...
which equals (A(x) + x)/2.
A( (A(x) + x)/2 ) = x + 3*x^2 + 22*x^3 + 221*x^4 + 2634*x^5 + 35086*x^6 + 506356*x^7 + 7773279*x^8 + 125441594*x^9 + 2110832382*x^10 +...
which equals sqrt( (A(x) - x)/2 ).
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 2*x^2 - 4*x^3 - 26*x^4 - 228*x^5 - 2396*x^6 - 28440*x^7 - 369114*x^8 - 5135468*x^9 - 75602108*x^10 - 1167066216*x^11 - 18768202924*x^12 +...
then Series_Reversion(x + A(x)^2) = x/2 + R(x)/2.
-
m = 26; A[_] = 0;
Do[A[x_] = x + 2 A[x/2 + A[x]/2]^2 + O[x]^(m+1) // Normal, {m+1}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
-
{a(n) = my(A=[1], F=x); for(i=1,n, A=concat(A,0); F=x*Ser(A); A[#A] = -polcoeff(subst(F,x,x-F^2) - F^2,#A) );A[n]}
for(n=1,30,print1(a(n),", "))
A276360
G.f. satisfies: A(x - A(x)^2) = x + 2*A(x)^2.
Original entry on oeis.org
1, 3, 24, 276, 3858, 61092, 1056816, 19550475, 381543576, 7782820548, 164842646424, 3607654164924, 81281990795520, 1879865970374568, 44527769989124976, 1078220967132218616, 26650484274297181896, 671558570413109457264, 17234310756238557856200, 450044549619831325213920, 11949386806898017225833312, 322394088574898542428753168, 8833647058171126097908059720
Offset: 1
G.f.: A(x) = x + 3*x^2 + 24*x^3 + 276*x^4 + 3858*x^5 + 61092*x^6 + 1056816*x^7 + 19550475*x^8 + 381543576*x^9 + 7782820548*x^10 + 164842646424*x^11 + 3607654164924*x^12 +...
such that A(x - A(x)^2) = x + 2*A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - A(x)^2) = 2*x/3 + A(x)/3, which begins:
Series_Reversion(x - A(x)^2) = x + x^2 + 8*x^3 + 92*x^4 + 1286*x^5 + 20364*x^6 + 352272*x^7 + 6516825*x^8 + 127181192*x^9 + 2594273516*x^10 + 54947548808*x^11 +
1202551388308*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 3*x^2 - 6*x^3 - 51*x^4 - 564*x^5 - 7416*x^6 - 109764*x^7 - 1772028*x^8 - 30603930*x^9 - 558238326*x^10 - 10659285096*x^11 - 211688430204*x^12 +...
then Series_Reversion(x + 2*A(x)^2) = x/3 + 2*R(x)/3.
-
m = 24; A[_] = 0;
Do[A[x_] = x + 3 A[2 x/3 + A[x]/3]^2 + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
-
{a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-F^2) - 2*F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
A276361
G.f. satisfies: A(x - 2*A(x)^2) = x + A(x)^2.
Original entry on oeis.org
1, 3, 30, 447, 8202, 171846, 3956796, 97916895, 2567551890, 70655670690, 2026596875268, 60282027684678, 1852444347792036, 58633762133405100, 1907098496516434680, 63620675921801106495, 2173457638433471757282, 75940916632597398212298, 2710857429948875567968692, 98775527832178103444182722, 3670845430153146908693608044, 139047871842184594320103381524, 5365224711989826990651317756232
Offset: 1
G.f.: A(x) = x + 3*x^2 + 30*x^3 + 447*x^4 + 8202*x^5 + 171846*x^6 + 3956796*x^7 + 97916895*x^8 + 2567551890*x^9 + 70655670690*x^10 + 2026596875268*x^11 + 60282027684678*x^12 +...
such that A(x - 2*A(x)^2) = x + A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - 2*A(x)^2) = x/3 + 2*A(x)/3, which begins:
Series_Reversion(x - 2*A(x)^2) = x + 2*x^2 + 20*x^3 + 298*x^4 + 5468*x^5 + 114564*x^6 + 2637864*x^7 + 65277930*x^8 + 1711701260*x^9 + 47103780460*x^10 + 1351064583512*x^11 + 40188018456452*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 3*x^2 - 12*x^3 - 132*x^4 - 1992*x^5 - 36144*x^6 - 742176*x^7 - 16688880*x^8 - 402824928*x^9 - 10300868160*x^10 - 276531035520*x^11 - 7742210941056*x^12 +...
then Series_Reversion(x + A(x)^2) = 2*x/3 + R(x)/3.
-
m = 24; A[_] = 0;
Do[A[x_] = x + 3 A[x/3 + 2 A[x]/3]^2 + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
-
{a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-2*F^2) - F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
A276362
G.f. satisfies: A(x - A(x)^2) = x + 3*A(x)^2.
Original entry on oeis.org
1, 4, 40, 564, 9592, 184008, 3844624, 85700980, 2011283640, 49248127800, 1250064156912, 32736194249256, 881252194701616, 24317581366876880, 686300288661644960, 19774058901706750100, 580795172081872246232, 17368587281321383296184, 528294942152813411073968, 16329939570298980826852824, 512590568042639978453793744, 16329084800479729420462546352, 527621994750854274463428080608
Offset: 1
G.f.: A(x) = x + 4*x^2 + 40*x^3 + 564*x^4 + 9592*x^5 + 184008*x^6 + 3844624*x^7 + 85700980*x^8 + 2011283640*x^9 + 49248127800*x^10 + 1250064156912*x^11 + 32736194249256*x^12 +...
such that A(x - A(x)^2) = x + 3*A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - A(x)^2) = 3*x/4 + A(x)/4, which begins:
Series_Reversion(x - A(x)^2) = x + x^2 + 10*x^3 + 141*x^4 + 2398*x^5 + 46002*x^6 + 961156*x^7 + 21425245*x^8 + 502820910*x^9 + 12312031950*x^10 + 312516039228*x^11 + 8184048562314*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 4*x^2 - 8*x^3 - 84*x^4 - 1112*x^5 - 17352*x^6 - 303824*x^7 - 5791060*x^8 - 117898648*x^9 - 2531645240*x^10 - 56835852080*x^11 - 1325547044072*x^12 +...
then Series_Reversion(x + 3*A(x)^2) = x/4 + 3*R(x)/4.
-
m = 24; A[_] = 0;
Do[A[x_] = x + 4 A[3x/4 + A[x]/4]^2 + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
-
{a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^2) - 3*F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
A276363
G.f. satisfies: A(x - 3*A(x)^2) = x + A(x)^2.
Original entry on oeis.org
1, 4, 56, 1172, 30248, 892296, 28951344, 1010322900, 37384819496, 1452697058744, 58872642043856, 2475764515398568, 107619880380347920, 4821324372637921744, 222077355203506939104, 10497354682052048593332, 508414637258604924680136, 25197644191294099697736312, 1276547957544912412461457680, 66046883289153773427379134360, 3487101507192780951408327918192
Offset: 1
G.f.: A(x) = x + 4*x^2 + 56*x^3 + 1172*x^4 + 30248*x^5 + 892296*x^6 + 28951344*x^7 + 1010322900*x^8 + 37384819496*x^9 + 1452697058744*x^10 + 58872642043856*x^11 +
2475764515398568*x^12 +...
such that A(x - 3*A(x)^2) = x + A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - 3*A(x)^2) = x/4 + 3*A(x)/4, which begins:
Series_Reversion(x - 3*A(x)^2) = x + 3*x^2 + 42*x^3 + 879*x^4 + 22686*x^5 + 669222*x^6 + 21713508*x^7 + 757742175*x^8 + 28038614622*x^9 + 1089522794058*x^10 + 44154481532892*x^11 + 1856823386548926*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 4*x^2 - 24*x^3 - 372*x^4 - 7944*x^5 - 204168*x^6 - 5942256*x^7 - 189500916*x^8 - 6490281480*x^9 - 235609789368*x^10 - 8983294304784*x^11 - 357373688297448*x^12 +...
then Series_Reversion(x + A(x)^2) = 3*x/4 + R(x)/4.
-
m = 22; A[_] = 0;
Do[A[x_] = x + 4A[x/4 + 3A[x]/4]^2 + O[x]^m // Normal, {m}];
CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
-
{a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 3*F^2) - F^2, #A) ); A[n]}
for(n=1, 30, print1(a(n), ", "))
Showing 1-10 of 24 results.
Comments