cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A277297 Diagonal of triangle A277295; a(n) = A277295(n+2,n).

Original entry on oeis.org

2, 14, 76, 378, 1808, 8484, 39446, 182732, 846248, 3926338, 18276832, 85436832, 401313288, 1894847846, 8994916236, 42931067910, 206002472336, 993664391720, 4817140123620, 23464959242520, 114820471485840, 564248307992850, 2783898831160512, 13786409317705920, 68509284536815640, 341538385855855064, 1707729163812908528
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2016

Keywords

Comments

G.f. G(x,y) of triangle A277295 satisfies:
(1) G(x,y) = x + G( y*G(x,y) + (1-y)*x, y)^2.
(2) G( x - y*G(x,y)^2, y) = x + (1-y)*G(x,y)^2.

Crossrefs

Programs

  • PARI
    {A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,30,print1(A277295(n+2,n-1),", "))

Formula

a(n) = 2 * A291822(n) for n >= 1. - Paul D. Hanna, Jul 24 2023

A277296 Column 2 of triangle A277295; a(n) = A277295(n+2,2).

Original entry on oeis.org

0, 5, 76, 698, 5088, 32461, 189940, 1046190, 5511440, 28061890, 139089880, 674600980, 3213923072, 15084364221, 69904629316, 320443984742, 1455102018480, 6553035703798, 29296998868904, 130133568013164, 574698326054848, 2524813186117010, 11040163152179976, 48069234287414668, 208481908639356448, 900995206054983396, 3881108155492099760
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2016

Keywords

Comments

G.f. G(x,y) of triangle A277295 satisfies:
(1) G(x,y) = x + G( y*G(x,y) + (1-y)*x, y)^2.
(2) G( x - y*G(x,y)^2, y) = x + (1-y)*G(x,y)^2.

Crossrefs

Programs

  • PARI
    {A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,30,print1(A277295(n+2,2),", "))

A277298 Central terms of triangle A277295 in odd-indexed rows; a(n) = A277295(2*n-1,n-1).

Original entry on oeis.org

1, 2, 76, 5404, 535410, 66031704, 9583782716, 1584902128648, 292586323812088, 59462699504146980, 13171171610678351360, 3155802303880338506184, 813045290972961285049576, 224143228528852050484555760, 65850557807967931843625040120, 20543425063284611418233827507248, 6784261706348459523065200262509390
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2016

Keywords

Comments

G.f. G(x,y) of triangle A277295 satisfies:
(1) G(x,y) = x + G( y*G(x,y) + (1-y)*x, y)^2.
(2) G( x - y*G(x,y)^2, y) = x + (1-y)*G(x,y)^2.

Crossrefs

Programs

  • PARI
    {A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,20,print1(A277295(2*n-1,n-1),", "))

A277299 Central terms of triangle A277295 in even-indexed rows; a(n) = A277295(2*n,n-1).

Original entry on oeis.org

1, 14, 698, 56410, 6036632, 784844330, 118467338692, 20204403241014, 3825143045741850, 794096638401382028, 179152196191253429864, 43621984527307144281094, 11400895235718650585287660, 3183846191638117842792003252, 946381984098376099573619213864, 298412976572690317096982653746772
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2016

Keywords

Comments

G.f. G(x,y) of triangle A277295 satisfies:
(1) G(x,y) = x + G( y*G(x,y) + (1-y)*x, y)^2.
(2) G( x - y*G(x,y)^2, y) = x + (1-y)*G(x,y)^2.

Crossrefs

Programs

  • PARI
    {A277295(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1,20,print1(A277295(2*n,n-1),", "))

A213591 G.f. A(x) satisfies A( x - A(x)^2 ) = x.

Original entry on oeis.org

1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1

Views

Author

Paul D. Hanna, Jun 14 2012

Keywords

Comments

Unsigned version of A139702.
Self-convolution is A276370.
Row sums of triangle A277295.

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
  • PARI
    {a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
    for(n=1,21,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
    a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025

Formula

G.f. satisfies:
(1) A(x) = x + A(A(x))^2.
(2) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
(3) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n)/x / n! ).
(4) A(x) = x*G(A(x)^2/x) where G(x) = 1 + x*G(1-1/G(x))^2 is the g.f. of A212411.
(5) A(x)^2 = x*F(A(x)) where F(x) = 1 - (x^2/F(x))/F(x^2/F(x)) is the g.f. of A213628.
(6) x = A(A( x-x^2 - A(x)^2 )). - Paul D. Hanna, Jul 01 2012
(7) A(x) is the unique solution to variable A in the infinite system of simultaneous equations starting with:
A = x + B^2;
B = A + C^2;
C = B + D^2;
D = C + E^2; ...
where B = A(A(x)), C = A(A(A(x))), D = A(A(A(A(x)))), etc.
...
a(n) = Sum_{k=0..n-1} A277295(n,k).
From Seiichi Manyama, Jun 05 2025: (Start)
Let b(n,k) = [x^n] (A(x)/x)^k.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * b(n-j,2*j).
a(n) = b(n-1,1). (End)

A275765 G.f. satisfies: A(x - A(x)^2) = x + A(x)^2.

Original entry on oeis.org

1, 2, 12, 106, 1148, 14156, 191400, 2775930, 42585412, 684496988, 11449962008, 198331811356, 3543990791480, 65136985937096, 1228531761076208, 23733123786608826, 468887742020767788, 9461919438245032500, 194817077269127033944, 4089069139317823277548, 87426000975842460304792, 1902787414323673070857528, 42133267254272433484761584, 948695717599714654940068604, 21712101305047777916075831096, 504865916349551192319293625016
Offset: 1

Views

Author

Paul D. Hanna, Aug 31 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 12*x^3 + 106*x^4 + 1148*x^5 + 14156*x^6 + 191400*x^7 + 2775930*x^8 + 42585412*x^9 + 684496988*x^10 + 11449962008*x^11 + 198331811356*x^12 +...
such that A(x - A(x)^2) = x + A(x)^2.
RELATED SERIES.
Series_Reversion(x - A(x)^2) = x + x^2 + 6*x^3 + 53*x^4 + 574*x^5 + 7078*x^6 + 95700*x^7 + 1387965*x^8 + 21292706*x^9 + 342248494*x^10 +...
which equals (A(x) + x)/2.
A( (A(x) + x)/2 ) = x + 3*x^2 + 22*x^3 + 221*x^4 + 2634*x^5 + 35086*x^6 + 506356*x^7 + 7773279*x^8 + 125441594*x^9 + 2110832382*x^10 +...
which equals sqrt( (A(x) - x)/2 ).
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 2*x^2 - 4*x^3 - 26*x^4 - 228*x^5 - 2396*x^6 - 28440*x^7 - 369114*x^8 - 5135468*x^9 - 75602108*x^10 - 1167066216*x^11 - 18768202924*x^12 +...
then Series_Reversion(x + A(x)^2) = x/2 + R(x)/2.
		

Crossrefs

Programs

  • Mathematica
    m = 26; A[_] = 0;
    Do[A[x_] = x + 2 A[x/2 + A[x]/2]^2 + O[x]^(m+1) // Normal, {m+1}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1], F=x); for(i=1,n, A=concat(A,0); F=x*Ser(A); A[#A] = -polcoeff(subst(F,x,x-F^2) - F^2,#A) );A[n]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 2 * A( x/2 + A(x)/2 )^2.
(2) A(x) = -x + 2 * Series_Reversion(x - A(x)^2).
(3) R(x) = -x + 2 * Series_Reversion(x + A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/2 - R(x)/2 ) ) = x/2 + R(x)/2, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*2^(n-k).

A276360 G.f. satisfies: A(x - A(x)^2) = x + 2*A(x)^2.

Original entry on oeis.org

1, 3, 24, 276, 3858, 61092, 1056816, 19550475, 381543576, 7782820548, 164842646424, 3607654164924, 81281990795520, 1879865970374568, 44527769989124976, 1078220967132218616, 26650484274297181896, 671558570413109457264, 17234310756238557856200, 450044549619831325213920, 11949386806898017225833312, 322394088574898542428753168, 8833647058171126097908059720
Offset: 1

Views

Author

Paul D. Hanna, Aug 31 2016

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 24*x^3 + 276*x^4 + 3858*x^5 + 61092*x^6 + 1056816*x^7 + 19550475*x^8 + 381543576*x^9 + 7782820548*x^10 + 164842646424*x^11 + 3607654164924*x^12 +...
such that A(x - A(x)^2) = x + 2*A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - A(x)^2) = 2*x/3 + A(x)/3, which begins:
Series_Reversion(x - A(x)^2) = x + x^2 + 8*x^3 + 92*x^4 + 1286*x^5 + 20364*x^6 + 352272*x^7 + 6516825*x^8 + 127181192*x^9 + 2594273516*x^10 + 54947548808*x^11 +
1202551388308*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 3*x^2 - 6*x^3 - 51*x^4 - 564*x^5 - 7416*x^6 - 109764*x^7 - 1772028*x^8 - 30603930*x^9 - 558238326*x^10 - 10659285096*x^11 - 211688430204*x^12 +...
then Series_Reversion(x + 2*A(x)^2) = x/3 + 2*R(x)/3.
		

Crossrefs

Programs

  • Mathematica
    m = 24; A[_] = 0;
    Do[A[x_] = x + 3 A[2 x/3 + A[x]/3]^2 + O[x]^m // Normal, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-F^2) - 2*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 3 * A( 2*x/3 + A(x)/3 )^2.
(2) A(x) = -2*x + 3 * Series_Reversion(x - A(x)^2).
(3) 2*R(x) = -x + 3 * Series_Reversion(x + 2*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/3 - R(x)/3 ) ) = x/3 + 2*R(x)/3, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*3^(n-k-1).

A276361 G.f. satisfies: A(x - 2*A(x)^2) = x + A(x)^2.

Original entry on oeis.org

1, 3, 30, 447, 8202, 171846, 3956796, 97916895, 2567551890, 70655670690, 2026596875268, 60282027684678, 1852444347792036, 58633762133405100, 1907098496516434680, 63620675921801106495, 2173457638433471757282, 75940916632597398212298, 2710857429948875567968692, 98775527832178103444182722, 3670845430153146908693608044, 139047871842184594320103381524, 5365224711989826990651317756232
Offset: 1

Views

Author

Paul D. Hanna, Aug 31 2016

Keywords

Examples

			G.f.: A(x) = x + 3*x^2 + 30*x^3 + 447*x^4 + 8202*x^5 + 171846*x^6 + 3956796*x^7 + 97916895*x^8 + 2567551890*x^9 + 70655670690*x^10 + 2026596875268*x^11 + 60282027684678*x^12 +...
such that A(x - 2*A(x)^2) = x + A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - 2*A(x)^2) = x/3 + 2*A(x)/3, which begins:
Series_Reversion(x - 2*A(x)^2) = x + 2*x^2 + 20*x^3 + 298*x^4 + 5468*x^5 + 114564*x^6 + 2637864*x^7 + 65277930*x^8 + 1711701260*x^9 + 47103780460*x^10 + 1351064583512*x^11 + 40188018456452*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 3*x^2 - 12*x^3 - 132*x^4 - 1992*x^5 - 36144*x^6 - 742176*x^7 - 16688880*x^8 - 402824928*x^9 - 10300868160*x^10 - 276531035520*x^11 - 7742210941056*x^12 +...
then Series_Reversion(x + A(x)^2) = 2*x/3 + R(x)/3.
		

Crossrefs

Programs

  • Mathematica
    m = 24; A[_] = 0;
    Do[A[x_] = x + 3 A[x/3 + 2 A[x]/3]^2 + O[x]^m // Normal, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-2*F^2) - F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 3 * A( x/3 + 2*A(x)/3 )^2.
(2) 2*A(x) = -x + 3 * Series_Reversion(x - 2*A(x)^2).
(3) R(x) = -2*x + 3 * Series_Reversion(x + A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/3 - R(x)/3 ) ) = 2*x/3 + R(x)/3, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*2^k*3^(n-k-1).

A276362 G.f. satisfies: A(x - A(x)^2) = x + 3*A(x)^2.

Original entry on oeis.org

1, 4, 40, 564, 9592, 184008, 3844624, 85700980, 2011283640, 49248127800, 1250064156912, 32736194249256, 881252194701616, 24317581366876880, 686300288661644960, 19774058901706750100, 580795172081872246232, 17368587281321383296184, 528294942152813411073968, 16329939570298980826852824, 512590568042639978453793744, 16329084800479729420462546352, 527621994750854274463428080608
Offset: 1

Views

Author

Paul D. Hanna, Aug 31 2016

Keywords

Examples

			G.f.: A(x) = x + 4*x^2 + 40*x^3 + 564*x^4 + 9592*x^5 + 184008*x^6 + 3844624*x^7 + 85700980*x^8 + 2011283640*x^9 + 49248127800*x^10 + 1250064156912*x^11 + 32736194249256*x^12 +...
such that A(x - A(x)^2) = x + 3*A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - A(x)^2) = 3*x/4 + A(x)/4, which begins:
Series_Reversion(x - A(x)^2) = x + x^2 + 10*x^3 + 141*x^4 + 2398*x^5 + 46002*x^6 + 961156*x^7 + 21425245*x^8 + 502820910*x^9 + 12312031950*x^10 + 312516039228*x^11 + 8184048562314*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 4*x^2 - 8*x^3 - 84*x^4 - 1112*x^5 - 17352*x^6 - 303824*x^7 - 5791060*x^8 - 117898648*x^9 - 2531645240*x^10 - 56835852080*x^11 - 1325547044072*x^12 +...
then Series_Reversion(x + 3*A(x)^2) = x/4 + 3*R(x)/4.
		

Crossrefs

Programs

  • Mathematica
    m = 24; A[_] = 0;
    Do[A[x_] = x + 4 A[3x/4  + A[x]/4]^2 + O[x]^m // Normal, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - F^2) - 3*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 4 * A( 3*x/4 + A(x)/4 )^2.
(2) A(x) = -3*x + 4 * Series_Reversion(x - A(x)^2).
(3) 3*R(x) = -x + 4 * Series_Reversion(x + 3*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/3 - R(x)/3 ) ) = x/4 + 3*R(x)/4, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*4^(n-k-1).

A276363 G.f. satisfies: A(x - 3*A(x)^2) = x + A(x)^2.

Original entry on oeis.org

1, 4, 56, 1172, 30248, 892296, 28951344, 1010322900, 37384819496, 1452697058744, 58872642043856, 2475764515398568, 107619880380347920, 4821324372637921744, 222077355203506939104, 10497354682052048593332, 508414637258604924680136, 25197644191294099697736312, 1276547957544912412461457680, 66046883289153773427379134360, 3487101507192780951408327918192
Offset: 1

Views

Author

Paul D. Hanna, Aug 31 2016

Keywords

Examples

			G.f.: A(x) = x + 4*x^2 + 56*x^3 + 1172*x^4 + 30248*x^5 + 892296*x^6 + 28951344*x^7 + 1010322900*x^8 + 37384819496*x^9 + 1452697058744*x^10 + 58872642043856*x^11 +
2475764515398568*x^12 +...
such that A(x - 3*A(x)^2) = x + A(x)^2.
RELATED SERIES.
Note that Series_Reversion(x - 3*A(x)^2) = x/4 + 3*A(x)/4, which begins:
Series_Reversion(x - 3*A(x)^2) = x + 3*x^2 + 42*x^3 + 879*x^4 + 22686*x^5 + 669222*x^6 + 21713508*x^7 + 757742175*x^8 + 28038614622*x^9 + 1089522794058*x^10 + 44154481532892*x^11 + 1856823386548926*x^12 +...
Let R(x) = Series_Reversion(A(x)) so that R(A(x)) = x,
R(x) = x - 4*x^2 - 24*x^3 - 372*x^4 - 7944*x^5 - 204168*x^6 - 5942256*x^7 - 189500916*x^8 - 6490281480*x^9 - 235609789368*x^10 - 8983294304784*x^11 - 357373688297448*x^12 +...
then Series_Reversion(x + A(x)^2) = 3*x/4 + R(x)/4.
		

Crossrefs

Programs

  • Mathematica
    m = 22; A[_] = 0;
    Do[A[x_] = x + 4A[x/4 + 3A[x]/4]^2 + O[x]^m // Normal, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {a(n) = my(A=[1],F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x - 3*F^2) - F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + 4 * A( x/4 + 3*A(x)/4 )^2.
(2) 3*A(x) = -x + 4 * Series_Reversion(x - 3*A(x)^2).
(3) R(x) = -3*x + 4 * Series_Reversion(x + A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x/4 - R(x)/4 ) ) = 3*x/4 + R(x)/4, where R(A(x)) = x.
a(n) = Sum_{k=0..n-1} A277295(n,k)*3^k*4^(n-k-1).
Showing 1-10 of 24 results. Next