cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277295 G.f. A(x,y) satisfies: A( x - y*A(x,y)^2, y) = x + (1-y)*A(x,y)^2, where the coefficients T(n,k) of x^n*y^k form a triangle read by rows n>=1, for k=0..n-1.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 5, 14, 5, 0, 14, 74, 76, 14, 0, 42, 352, 698, 378, 42, 0, 132, 1588, 5088, 5404, 1808, 132, 0, 429, 6946, 32461, 56410, 37546, 8484, 429, 0, 1430, 29786, 189940, 486550, 535410, 244220, 39446, 1430, 0, 4862, 126008, 1046190, 3690410, 6036632, 4597402, 1522466, 182732, 4862, 0, 16796, 527900, 5511440, 25518020, 57890956, 66031704, 36873036, 9227504, 846248, 16796, 0, 58786, 2195580, 28061890, 164565240, 493085566, 784844330, 661152388, 281873618, 54885974, 3926338, 58786, 0
Offset: 1

Views

Author

Paul D. Hanna, Oct 11 2016

Keywords

Comments

More generally, we have the following related identity.
Given functions F and G with F(0)=0, F'(0)=1, G(0)=0, G'(0)=0,
if F(x - y*G(x)) = x + (1-y)*G(x), then
(1) F(x) = x + G( y*F(x) + (1-y)*x ),
(2) y*F(x) + (1-y)*x = Series_Reversion(x - y*G(x)),
(3) F(x) = x + G(x + y*G(x + y*G(x + y*G(x +...)))),
(4) F(x) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) G(x)^n / n!.
The g.f. of this sequence A(x,y) equals F(x) in the above when G(x) = F(x)^2.

Examples

			G.f.: A(x,y)  = x + x^2 + (2*y + 2)*x^3 + (5*y^2 + 14*y + 5)*x^4 + (14*y^3 + 76*y^2 + 74*y + 14)*x^5 + (42*y^4 + 378*y^3 + 698*y^2 + 352*y + 42)*x^6 + (132*y^5 + 1808*y^4 + 5404*y^3 + 5088*y^2 + 1588*y + 132)*x^7 + (429*y^6 + 8484*y^5 + 37546*y^4 + 56410*y^3 + 32461*y^2 + 6946*y + 429)*x^8 + (1430*y^7 + 39446*y^6 + 244220*y^5 + 535410*y^4 + 486550*y^3 + 189940*y^2 + 29786*y + 1430)*x^9 + (4862*y^8 + 182732*y^7 + 1522466*y^6 + 4597402*y^5 + 6036632*y^4 + 3690410*y^3 + 1046190*y^2 + 126008*y + 4862)*x^10 +...
such that
A( x - y*A(x,y)^2, y)  =  x + (1-y)*A(x,y)^2.
Also,
A(x,y) = x + A( y*A(x,y) + (1-y)*x, y)^2.
...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
1, 0;
2, 2, 0;
5, 14, 5, 0;
14, 74, 76, 14, 0;
42, 352, 698, 378, 42, 0;
132, 1588, 5088, 5404, 1808, 132, 0;
429, 6946, 32461, 56410, 37546, 8484, 429, 0;
1430, 29786, 189940, 486550, 535410, 244220, 39446, 1430, 0;
4862, 126008, 1046190, 3690410, 6036632, 4597402, 1522466, 182732, 4862, 0;
16796, 527900, 5511440, 25518020, 57890956, 66031704, 36873036, 9227504, 846248, 16796, 0;
58786, 2195580, 28061890, 164565240, 493085566, 784844330, 661152388, 281873618, 54885974, 3926338, 58786, 0; ...
RELATED SEQUENCES.
Given T(n,k) is the coefficient of x^n*y^k in g.f. A(x,y),
if b(n) = Sum_{k=0..n-1} T(n,k) * p^k * q^(n-k-1)
then B(x) = Sum_{n>=1} b(n)*x^n satisfies
(1) B(x - p*B(x)^2) = x + (q-p)*B(x)^2
(2) B(x)  =  x + B( p*B(x) + (q-p)*x )^2.
Examples:
A213591(n) = sum(k=0,n-1, T(n,k) )
A275765(n) = sum(k=0,n-1, T(n,k) * 2^(n-k) )
A276360(n) = sum(k=0,n-1, T(n,k) * 3^(n-k-1) )
A276361(n) = sum(k=0,n-1, T(n,k) * 2^k * 3^(n-k-1) )
A276362(n) = sum(k=0,n-1, T(n,k) * 4^(n-k-1) )
A276363(n) = sum(k=0,n-1, T(n,k) * 3^k * 4^(n-k-1) )
A276365(n) = sum(k=0,n-1, T(n,k) * 2^k )
A277300(n) = sum(k=0,n-1, T(n,k) * 5^(n-k-1) )
A277301(n) = sum(k=0,n-1, T(n,k) * 2^k * 5^(n-k-1) )
A277302(n) = sum(k=0,n-1, T(n,k) * 3^k * 5^(n-k-1) )
A277303(n) = sum(k=0,n-1, T(n,k) * 4^k * 5^(n-k-1) )
A277304(n) = sum(k=0,n-1, T(n,k) * 6^(n-k-1) )
A277305(n) = sum(k=0,n-1, T(n,k) * 5^k * 6^(n-k-1) )
A277306(n) = sum(k=0,n-1, T(n,k) * (-1)^k )
A277307(n) = sum(k=0,n-1, T(n,k) * 3^k )
A277308(n) = sum(k=0,n-1, T(n,k) * 3^k * 2^(n-k-1) )
A277309(n) = sum(k=0,n-1, T(n,k) * 5^k * 2^(n-k-1) )
A277310(n) = sum(k=0,n-1, T(n,k) * 4^k )
A277311(n) = sum(k=0,n-1, T(n,k) * 5^k )
...
		

Crossrefs

Cf. A000108 (column 0), A138156 (column 1), A277296 (column 2), A277297 (diagonal), A277298 (central terms T(2*n-1,n-1)), A277299 (central terms T(2*n,n-1)).

Programs

  • Mathematica
    c[n_] := c[n] = Module[{A}, A[x_] = x; Do[A[x_] = x + A[y A[x] + (1-y) x + x O[x]^j]^2, {j, n}] // Normal; SeriesCoefficient[A[x], {x, 0, n}] // Expand];
    T[n_, k_] := SeriesCoefficient[c[n], {y, 0, k}];
    Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 30 2019 *)
  • PARI
    {T(n,k) = my(A=x); for(i=1, n, A = x + subst(A^2, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "));print(""))

Formula

G.f. A(x,y) also satisfies:
(1) A(x,y) = x + A( y*A(x,y) + (1-y)*x, y)^2.
(2) y*A(x,y) + (1-y)*x = Series_Reversion( x - y*A(x,y)^2 ).
(3) y*x + (1-y)*B(x,y) = Series_Reversion( x + (1-y)*A(x,y)^2 ), where B( A(x,y), y) = x.
(4) A(x,y) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) A(x,y)^(2*n) / n!.
In formulas 2 and 3, the series reversion is taken with respect to variable x.
T(n+1,0) = T(n+1,n-1) = binomial(2*n,n)/(n+1) = A000108(n) for n>=1.
T(n+1,1) = 4^n - (3*n+1)*binomial(2*n,n)/(n+1) = A138156(n-1) for n>=1.

A277306 G.f. satisfies: A(x + A(x)^2) = x + 2*A(x)^2.

Original entry on oeis.org

1, 1, 0, -4, 2, 52, -96, -975, 4240, 18460, -183448, -101716, 7373216, -23650520, -230147920, 2198499720, 664806792, -124144328784, 703989911368, 3189500786336, -68800373946656, 284782780974128, 2913071885553608, -47063844278787824, 170357147598919640, 2621783446017272624, -41775596442709927664, 166446909354828214608
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 - 4*x^4 + 2*x^5 + 52*x^6 - 96*x^7 - 975*x^8 + 4240*x^9 + 18460*x^10 - 183448*x^11 - 101716*x^12 + 7373216*x^13 - 23650520*x^14 - 230147920*x^15 + 2198499720*x^16 + 664806792*x^17 - 124144328784*x^18 + 703989911368*x^19 + 3189500786336*x^20 +...
such that
A(x + A(x)^2) = x + 2*A(x)^2
also,
A(x) = x + A( 2*x - A(x) )^2.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + x^4 - 8*x^5 - 4*x^6 + 108*x^7 - 72*x^8 - 2158*x^9 + 6118*x^10 + 46376*x^11 - 319856*x^12 - 618132*x^13 + 14320096*x^14 - 30385024*x^15 - 505460559*x^16 + 3846420096*x^17 + 5951934200*x^18 - 243911854368*x^19 + 1136290742936*x^20 +...
A(x + A(x)^2) = x + 2*x^2 + 4*x^3 + 2*x^4 - 16*x^5 - 8*x^6 + 216*x^7 - 144*x^8 - 4316*x^9 + 12236*x^10 + 92752*x^11 - 639712*x^12 +...
which equals x + 2*A(x)^2.
Series_Reversion(A(x)) = x - x^2 + 2*x^3 - x^4 - 12*x^5 + 32*x^6 + 156*x^7 - 1140*x^8 - 1178*x^9 + 41270*x^10 - 105480*x^11 - 1274828*x^12 + 10307292*x^13 + 13297704*x^14 - 609624768*x^15 + 2614447647*x^16 + 21136068780*x^17 - 300421913212*x^18 + 590894313656*x^19 + 17309654827168*x^20 +...
which equals 2*x - Series_Reversion(x + 2*A(x)^2).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x + F^2) - 2*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + A( 2*x - A(x) )^2.
(2) A(x) = 2*x - Series_Reversion(x + A(x)^2).
(3) R(x) = x/2 + 1/2 * Series_Reversion(x + 2*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x - R(x) ) ) = -x + 2*R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} (-1)^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
a(n) = Sum_{k=0..n-1} (-1)^k * A277295(n,k).

A277311 G.f. satisfies: A(x - 5*A(x)^2) = x - 4*A(x)^2.

Original entry on oeis.org

1, 1, 12, 200, 4034, 92752, 2353272, 64579809, 1891598860, 58591554652, 1906271367296, 64816527248936, 2294331974613872, 84290267670946720, 3206227129084419920, 126022120854865417140, 5110001578581607976400, 213458728365617240931360, 9175021814527973211291880, 405366362599820848509766760, 18392202994173383123235536800, 856255190568423353781484124240
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2016

Keywords

Examples

			G.f.: A(x) = x + x^2 + 12*x^3 + 200*x^4 + 4034*x^5 + 92752*x^6 + 2353272*x^7 + 64579809*x^8 + 1891598860*x^9 + 58591554652*x^10 +...
such that  A(x - 5*A(x)^2) = x - 4*A(x)^2.
A(x)^2 = x^2 + 2*x^3 + 25*x^4 + 424*x^5 + 8612*x^6 + 198372*x^7 + 5028864*x^8 + 137705810*x^9 + 4022209822*x^10 + 124205854376*x^11 + 4028545272136*x^12 + 136566005356212*x^13 + 4820263259998720*x^14 + 176614868022441920*x^15 +...
A(x - 5*A(x)^2) = x - 4*x^2 - 8*x^3 - 100*x^4 - 1696*x^5 - 34448*x^6 - 793488*x^7 - 20115456*x^8 - 550823240*x^9 - 16088839288*x^10 +...
which equals x - 4*A(x)^2.
Series_Reversion(x - 5*A(x)^2) = x + 5*x^2 + 60*x^3 + 1000*x^4 + 20170*x^5 + 463760*x^6 + 11766360*x^7 + 322899045*x^8 + 9457994300*x^9 +...
which equals  5*A(x) - 4*x.
A( 5*A(x) - 4*x ) = x + 6*x^2 + 82*x^3 + 1525*x^4 + 33864*x^5 + 848402*x^6 + 23259832*x^7 + 685028874*x^8 + 21411099560*x^9 + 704295189492*x^10 +24234549363096*x^11 + 868423052983416*x^12 + 32296557071230392*x^13 + 1243216715481216720*x^14 + 49428242214109804120*x^15 +...
which equals  sqrt( A(x) -x ).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); A[#A] = -polcoeff(subst(F, x, x-5*F^2) + 4*F^2, #A) ); A[n]}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f. A(x) also satisfies:
(1) A(x) = x + A( 5*A(x) - 4*x )^2.
(2) A(x) = 4*x/5 + 1/5 * Series_Reversion(x - 5*A(x)^2).
(3) R(x) = 5*x/4 - 1/4 * Series_Reversion(x - 4*A(x)^2), where R(A(x)) = x.
(4) R( sqrt( x - R(x) ) ) = 5*x - 4*R(x), where R(A(x)) = x.
(5) A(x) = x + Sum_{n>=1} 5^(n-1) * d^(n-1)/dx^(n-1) A(x)^(2*n) / n!.
a(n) = Sum_{k=0..n-1} A277295(n,k) * 5^k.
Showing 1-3 of 3 results.