A277312 Smallest k such that k - lambda(k) = prime(n), where lambda(k) = A002322(k).
4, 9, 25, 49, 15, 169, 289, 361, 33, 841, 961, 1369, 1681, 1849, 69, 65, 87, 3721, 4489, 115, 5329, 91, 123, 7921, 9409, 10201, 10609, 159, 11881, 12769, 16129, 215, 18769, 19321, 185, 22801, 24649, 26569, 249, 221, 267, 32761, 329, 37249, 38809, 39601, 247, 259, 339, 52441
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..446
Programs
-
Maple
N:= 100: # to get a(1)..a(N) A:= Vector(N): A[1]:= 4: count:= 1: for k from 9 by 2 while count < N do r:= k - numtheory:-lambda(k); if isprime(r) then n:= numtheory:-pi(r); if n <= N and A[n] = 0 then count:= count+1; A[n]:= k; fi fi od: convert(A,list); # Robert Israel, Oct 14 2016
-
Mathematica
Table[k = 1; While[k - CarmichaelLambda@ k != Prime@ n, k++]; k, {n, 50}] (* Michael De Vlieger, Oct 14 2016 *)
-
PARI
a(n) = {my(k = 1); while (k - lcm(znstar(k)[2]) != prime(n), k++); k;} \\ Michel Marcus, Oct 09 2016
Extensions
More terms from Altug Alkan, Oct 09 2016
Comments