A277335 Fibbinary numbers multiplied by three: a(n) = 3*A003714(n); Numbers where all 1-bits occur in runs of even length.
0, 3, 6, 12, 15, 24, 27, 30, 48, 51, 54, 60, 63, 96, 99, 102, 108, 111, 120, 123, 126, 192, 195, 198, 204, 207, 216, 219, 222, 240, 243, 246, 252, 255, 384, 387, 390, 396, 399, 408, 411, 414, 432, 435, 438, 444, 447, 480, 483, 486, 492, 495, 504, 507, 510, 768, 771, 774, 780, 783, 792, 795, 798, 816, 819, 822, 828, 831, 864, 867, 870, 876, 879, 888
Offset: 0
Links
Programs
-
Mathematica
3 Select[Range[300], BitAnd[#, 2 #]==0 &] (* Vincenzo Librandi, Sep 12 2017 *)
-
Python
def A277335(n): tlist, s = [1,2], 0 while tlist[-1]+tlist[-2] <= n: tlist.append(tlist[-1]+tlist[-2]) for d in tlist[::-1]: s <<= 1 if d <= n: s += 1 n -= d return 3*s # Chai Wah Wu, Apr 24 2025
-
Scheme
(define (A277335 n) (* 3 (A003714 n)))
Formula
a(n) = 3*A003714(n).
Comments