cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277337 Number of pairs of functions (f,g) from a set of n elements into itself that are generalized reflexive inverses of each other.

Original entry on oeis.org

1, 1, 6, 87, 2056, 71145, 3355956, 203899087, 15451934016, 1419181414929, 154796303577700, 19713331210664751, 2891162097251141616, 482733064744447450297, 90871916094948544512516, 19125402877558442317308975, 4467829768503489097383022336, 1151133088512781095709101702177, 325279313240363190497696752254276
Offset: 0

Views

Author

David Einstein, Oct 09 2016

Keywords

Comments

The number of pairs of functions (f,g) from a set of n elements into itself such that f(g(f(x))) = f(x) and g(f(g(x))) = g(x).

Examples

			For n=2 the a(2)=6 solutions are
1: [1,1] [1,1]
2: [1,1] [2,2]
3: [2,2] [1,1]
4: [2,2] [2,2]
5: [1,2] [1,2]
6: [2,1] [2,1]
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[n!*Binomial[n, k]*k^(2*(n-k))/(n-k)!, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2016 *)
  • PARI
    a(n) = sum(k = 1, n, n! / (n - k)! * binomial(n, k) * k^(2 * (n - k) ) ); \\ Joerg Arndt, Oct 10 2016

Formula

a(n) = Sum_{k=0..n} ((n! / (n - k)!) * C(n, k) * k^(2 * (n - k))).

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 20 2016