A277337 Number of pairs of functions (f,g) from a set of n elements into itself that are generalized reflexive inverses of each other.
1, 1, 6, 87, 2056, 71145, 3355956, 203899087, 15451934016, 1419181414929, 154796303577700, 19713331210664751, 2891162097251141616, 482733064744447450297, 90871916094948544512516, 19125402877558442317308975, 4467829768503489097383022336, 1151133088512781095709101702177, 325279313240363190497696752254276
Offset: 0
Keywords
Examples
For n=2 the a(2)=6 solutions are 1: [1,1] [1,1] 2: [1,1] [2,2] 3: [2,2] [1,1] 4: [2,2] [2,2] 5: [1,2] [1,2] 6: [2,1] [2,1]
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..272
Programs
-
Mathematica
Flatten[{1, Table[Sum[n!*Binomial[n, k]*k^(2*(n-k))/(n-k)!, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2016 *)
-
PARI
a(n) = sum(k = 1, n, n! / (n - k)! * binomial(n, k) * k^(2 * (n - k) ) ); \\ Joerg Arndt, Oct 10 2016
Formula
a(n) = Sum_{k=0..n} ((n! / (n - k)!) * C(n, k) * k^(2 * (n - k))).
Extensions
a(0)=1 prepended by Alois P. Heinz, Oct 20 2016
Comments