cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277354 a(n) = Product_{k=1..n} (4*k^2+1).

Original entry on oeis.org

1, 5, 85, 3145, 204425, 20646925, 2993804125, 589779412625, 151573309044625, 49261325439503125, 19753791501240753125, 9580588878101765265625, 5527999782664718558265625, 3742455852864014463945828125, 2937827844498251354197475078125
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 10 2016

Keywords

Comments

In general, for m>0, Product_{k=1..n} (m*k^2+1) is asymptotic to 2*m^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(m)) / exp(2*n).

Crossrefs

Programs

  • Mathematica
    Table[Product[4*k^2+1, {k, 1, n}], {n, 0, 15}]
    Round@Table[2^(2 n + 1) Abs[Gamma[1 + I/2 + n]]^2 Sinh[Pi/2]/Pi, {n, 0, 15}] (* Vladimir Reshetnikov, Oct 10 2016 *)
  • PARI
    a(n) = prod(k=1, n, (4*k^2+1)); \\ Michel Marcus, Oct 11 2016

Formula

a(n) = (-1)^(n+1) * A101928(n+2).
a(n) ~ 2^(2*n+2) * n^(2*n+1) * sinh(Pi/2) / exp(2*n).
a(n) = 2^(2*n+1) * |Gamma(1 + i/2 + n)|^2 * sinh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 10 2016