cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277360 Number of self-avoiding planar walks starting at (0,0), ending at (n,n), remaining in the first quadrant and using steps (0,1), (1,0), (1,1), (-1,1), and (1,-1).

Original entry on oeis.org

1, 9, 491, 64159, 15314361, 5799651689, 3193954129651, 2410542221526399, 2388182999073694001, 3006071549433968619529, 4685653563347872021885371, 8859314350383162594502273439, 19975392290718104323103596377961, 52949467092712165429316121638458089
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 8*n+1,
          (16*n^2-4*n-1)*a(n-1)-n*(4*n-6)*a(n-2))
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = If[n<2, 8n+1, (16n^2 - 4n - 1) a[n-1] - n (4n-6) a[n-2]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 29 2017, translated from Maple *)

Formula

a(n) = (16*n^2-4*n-1)*a(n-1) - n*(4*n-6)*a(n-2) for n>1, a(0)=1, a(1)=9.
a(n) = (2n)! * [x^(2n)] exp(-x/2)/(1-2*x)^(5/4).
a(n) = A277358(2*n).
a(n) ~ sqrt(Pi) * 2^(4*n + 13/4) * n^(2*n + 3/4) / (Gamma(1/4) * exp(2*n + 1/4)). - Vaclav Kotesovec, Oct 13 2016