cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277361 a(n) = Sum_{k=0..n} k^3 * binomial(n-k, k).

Original entry on oeis.org

0, 0, 1, 2, 11, 28, 80, 194, 461, 1036, 2263, 4800, 9960, 20268, 40577, 80086, 156115, 301004, 574744, 1087918, 2043229, 3810320, 7060079, 13004832, 23826480, 43437240, 78827425, 142446698, 256400411, 459826588, 821834624, 1464149690, 2600662157, 4606368148
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 10 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n (3 n^2 + 3 n - 2) LucasL[n] - (5 n^3 + 3 n^2 - 2 n - 2) Fibonacci[n])/50, {n, 0, 30}] (* or *)
    Table[Sum[k^3 Binomial[n - k, k], {k, 0, n}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n, k^3*binomial(n-k, k)); \\ Michel Marcus, Oct 11 2016
    
  • PARI
    a(n) = my(f1=fibonacci(n-1),f2=fibonacci(n)); (n*(3*n^2 + 3*n - 2)*(2*f1+f2) - (5*n^3 + 3*n^2 - 2*n - 2)*f2)/50 \\ Charles R Greathouse IV, Oct 13 2016

Formula

a(n) = (n*(3*n^2 + 3*n - 2)*A000032(n) - (5*n^3 + 3*n^2 - 2*n - 2)*A000045(n))/50.
a(n) ~ (phi^(n-2)*n^3)/25, phi = (1+sqrt(5))/2.
G.f.: x^2*(1 + x*(x-2)*(x-1)^2)/(x^2 + x - 1)^4.
D-finite with recurrence: (n^5 + 3*n^4 - 5*n^3 - 5*n^2 - n + 2)*a(n) + (n+1)^2*(n^3 + 4*n^2 + n - 1)*a(n-1) = n*(n^4 - 5*n^2 + 5*n - 1)*a(n+1).
E.g.f.: exp(x/2)*(5*x*(x^2 + 9*x - 1)*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x^3 + 3*x^2 + 7*x + 2)*sinh(sqrt(5)*x/2))/125. - Stefano Spezia, Mar 20 2023