A277365 a(n) is the smallest number k such that f(k) = f(n) + f(n+1) and g(k) = g(n) + g(n+1), where f(n) (resp. g(n)) is the number of halving (resp. tripling) steps to reach 1 in the Collatz ('3x+1') problem.
2, 6, 12, 20, 34, 49, 56, 72, 98, 112, 144, 176, 196, 228, 224, 272, 344, 406, 392, 384, 448, 520, 576, 688, 688, 772, 913, 912, 912, 1028, 992, 1040, 1220, 1152, 1376, 1624, 1624, 1708, 1624, 1728, 1728, 1824, 2160, 2080, 2080, 2215, 2559, 2752, 2884, 2884, 2752
Offset: 1
Keywords
Examples
a(3) = 12 because (A006666(3), A006667(3)) = (f(3), g(3)) = (5, 2) => f(12) = f(3) + f(4) = 5 + 2 = 7 and g(12) = g(3) + g(4) = 2 + 0 = 2.
Programs
-
Maple
nn:=10^6:U:=array(1..nn):V:=array(1..nn): for i from 1 to nn do: m:=i:it0:=0:it1:=0: for j from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2:it0:=it0+1: else m:=3*m+1:it1:=it1+1: fi: od: U[i]:=it0:V[i]:=it1: od: for n from 1 to 100 do: ii:=0: for k from 1 to nn while(ii=0) do: if U[k]=U[n]+U[n+1] and V[k]=V[n]+V[n+1] then ii:=1:printf(`%d, `,k): else fi: od: od:
Extensions
Name edited by Michel Marcus, Sep 13 2017
Comments