cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277381 a(n) = exp(-1) * Sum_{k>=0} H_n(k)/k!, where H_n(x) is n-th Hermite polynomial.

Original entry on oeis.org

1, 2, 6, 28, 156, 984, 7112, 57488, 508688, 4887840, 50639200, 561416640, 6621963712, 82719611264, 1089925195904, 15094182365440, 219035852333312, 3321573144437248, 52511336993334784, 863594855161338880, 14746060593172585472, 260971042697438779392
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 11 2016

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(2*x) -x^2 -1))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018
  • Maple
    g := exp(exp(2*x)-x^2-1): ser := series(g,x,32):
    seq(n!*coeff(ser,x,n), n=0..21); # Peter Luschny, Oct 19 2016
  • Mathematica
    Table[Sum[HermiteH[n, k]/k!, {k, 0, Infinity}]/E, {n, 0, 20}] (* or *)
    Table[SeriesCoefficient[Exp[Exp[2 x] - x^2 - 1], {x, 0, n}] n!, {n, 0, 20}]
    With[{nmax = 50}, CoefficientList[Series[Exp[Exp[2*x] - x^2 - 1], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
    Table[Sum[Binomial[n, k] * 2^k * BellB[k] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 13 2018 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(exp(exp(2*x)-x^2-1))) \\ G. C. Greubel, Jul 12 2018
    

Formula

E.g.f.: exp(exp(2*x)-x^2-1).
a(n) ~ 2^n * n^n * exp(n/LambertW(n) - LambertW(n)^2 / 4 - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Jun 29 2022

A316778 a(n) = exp(-1/2) * Sum_{k>=0} H_n(k) / (k!*2^k), where H_n(x) is n-th Hermite polynomial.

Original entry on oeis.org

1, 1, 1, 5, 25, 97, 489, 3285, 22481, 160737, 1293041, 11348933, 105136937, 1033279873, 10808289561, 119401994709, 1385242479137, 16846680046657, 214333419288161, 2844927602028549, 39305588104667321, 564208058072724257, 8400178767847987401, 129509650839484638037
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 13 2018

Keywords

Comments

In general, if m >= 1, b <> 0 and e.g.f. = exp(m*exp(b*x) + q*x^2 + r*x + s) then a(n) ~ b^n * n^(n + r/b) * exp(n/LambertW(n/m) + q*LambertW(n/m)^2 / b^2 - n + s) / (m^(r/b) * sqrt(1 + LambertW(n/m)) * LambertW(n/m)^(n + r/b)). - Vaclav Kotesovec, Jun 29 2022

Crossrefs

Programs

  • Mathematica
    Table[Exp[-1/2]*Sum[HermiteH[n, k]/k!/2^k, {k, 0, Infinity}], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[Exp[Exp[2*x]/2 - x^2 - 1/2], {x, 0, nmax}], x] * Range[0, nmax]!
    Table[Sum[Binomial[n, k] * 2^k * BellB[k, 1/2] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}]

Formula

E.g.f.: exp(exp(2*x)/2 - x^2 - 1/2).
a(n) ~ 2^n * n^n * exp(n/LambertW(2*n) - LambertW(2*n)^2 / 4 - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^n). - Vaclav Kotesovec, Jun 29 2022
Showing 1-2 of 2 results.