A316778
a(n) = exp(-1/2) * Sum_{k>=0} H_n(k) / (k!*2^k), where H_n(x) is n-th Hermite polynomial.
Original entry on oeis.org
1, 1, 1, 5, 25, 97, 489, 3285, 22481, 160737, 1293041, 11348933, 105136937, 1033279873, 10808289561, 119401994709, 1385242479137, 16846680046657, 214333419288161, 2844927602028549, 39305588104667321, 564208058072724257, 8400178767847987401, 129509650839484638037
Offset: 0
-
Table[Exp[-1/2]*Sum[HermiteH[n, k]/k!/2^k, {k, 0, Infinity}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[Exp[Exp[2*x]/2 - x^2 - 1/2], {x, 0, nmax}], x] * Range[0, nmax]!
Table[Sum[Binomial[n, k] * 2^k * BellB[k, 1/2] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}]
A355337
Expansion of e.g.f.: exp(exp(x) + x^2 - 1).
Original entry on oeis.org
1, 1, 4, 11, 51, 212, 1133, 6001, 36508, 228435, 1559575, 11079180, 83753497, 659858617, 5459331036, 46980355355, 421272977267, 3917446787884, 37766791690501, 376447420971545, 3875957531387172, 41149332371734371, 449984429580538407, 5061923434006018612, 58517321729774406129
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] + x^2 - 1], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x) + x^2 - 1))) \\ Michel Marcus, Jun 29 2022
-
a(n) = sum(k=0, floor(n/2), sum(m=0, n-(k*2), stirling(n-(k*2), m, 2))*(2*k)!/k!*binomial(n, n-(k*2))) \\ Thomas Scheuerle, Jun 01 2024
A277380
a(n) = Sum_{k>=1} H_n(k-1)/2^k, where H_n(x) is n-th Hermite polynomial.
Original entry on oeis.org
1, 2, 10, 92, 1068, 15352, 265752, 5368400, 123919248, 3217983008, 92851377312, 2947037232064, 102040223376576, 3827536020146048, 154615082607931776, 6691872388083371264, 308938595472492867840, 15153942107317778727424, 787050616613300039649792
Offset: 0
-
Table[Sum[HermiteH[n, k - 1]/2^k, {k, 1, Infinity}], {n, 0, 20}]
-
for(n=0,40, print1(if(n==0,1, ceil(sum(k=1, 15*n, polhermite(n, k-1)/2^k))), ", ")) \\ G. C. Greubel, Jul 13 2018
-
nmax = 40; p = floor(2*log(nmax!*(2/log(2))^nmax)/log(10)); default(realprecision, p); a(n) = round(suminf(k=1, polhermite(n, k-1)/2^k));
for(n=0, nmax, print1(a(n), ", ")); \\ Michel Marcus and Vaclav Kotesovec, Jul 13 2018
A355338
Expansion of e.g.f.: exp(exp(x) - x^2 - 1).
Original entry on oeis.org
1, 1, 0, -1, 3, 12, -7, -47, 332, 1347, -2105, -4200, 135457, 474697, -900832, 4682135, 126196787, 439488524, 233313817, 19129265609, 239146712732, 1104038984091, 5891696027079, 89831511761320, 911995655018817, 6253185308181553, 54873149768926624, 653039078246798383
Offset: 0
-
nmax = 30; CoefficientList[Series[Exp[Exp[x] - x^2 - 1], {x, 0, nmax}], x] * Range[0, nmax]!
-
my(x='x+O('x^30)); Vec(serlaplace(exp(exp(x) - x^2 - 1))) \\ Michel Marcus, Jun 29 2022
Showing 1-4 of 4 results.
Comments