A277389 Numbers k such that lambda(k)^3 divides (k-1)^2, where lambda(k) = A002322(k).
1, 2, 1729, 19683001, 367804801, 631071001, 2064236401, 2320690177, 24899816449, 40017045601, 110592000001, 137299665601, 432081216001, 479534887801, 760355883001, 1111195454401, 3176523000001, 3495866888449, 3837165696001, 8571867768001, 14373832968001
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1469 (terms below 10^22, calculated using data from Claude Goutier; terms 1..58 from Robert Israel, terms 59..101 from Charles R Greathouse IV)
- Claude Goutier, Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22.
Programs
-
PARI
isok(n) = ((n-1)^2 % (lcm(znstar(n)[2])^3)) == 0; \\ Michel Marcus, Oct 12 2016
Extensions
a(4) from Michel Marcus, Oct 12 2016
a(5)-a(6) from Michel Marcus, Oct 13 2016
More terms from Robert Israel, Oct 13 2016
Comments