cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277410 G.f. A(x,y) satisfies: A( x - y*G(x,y), y) = x + (1-y)*G(x,y) such that G(x,y) = Integral A(x,y) dx, where the coefficients T(n,k) of x^n*y^k form a triangle read by rows n>=1, for k=0..n-1.

Original entry on oeis.org

1, 1, 0, 1, 3, 0, 1, 13, 15, 0, 1, 38, 165, 105, 0, 1, 94, 1033, 2310, 945, 0, 1, 213, 4953, 26229, 36330, 10395, 0, 1, 459, 20370, 213511, 674520, 640710, 135135, 0, 1, 960, 76056, 1421225, 8559675, 18127935, 12588345, 2027025, 0, 1, 1972, 266334, 8283234, 85654979, 337805535, 515903850, 273544425, 34459425, 0, 1, 4007, 892542, 44013478, 729292193, 4822487682, 13506364410, 15631793100, 6529047525, 654729075, 0
Offset: 1

Views

Author

Paul D. Hanna, Oct 13 2016

Keywords

Comments

More generally, we have the following related identity.
Given functions F and G with F(0)=0, F'(0)=1, G(0)=0, G'(0)=0,
if F(x - y*G(x)) = x + (1-y)*G(x), then
(1) F(x) = x + G( y*F(x) + (1-y)*x ),
(2) y*F(x) + (1-y)*x = Series_Reversion(x - y*G(x)),
(3) F(x) = x + G(x + y*G(x + y*G(x + y*G(x +...)))),
(4) F(x) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) G(x)^n / n!.
The g.f. of this sequence A(x,y) equals F(x) in the above when G(x) = Integral F(x) dx.

Examples

			G.f.: A(x,y) = x + x^2/2! + (3*y + 1)*x^3/3! + (15*y^2 + 13*y + 1)*x^4/4! + (105*y^3 + 165*y^2 + 38*y + 1)*x^5/5! + (945*y^4 + 2310*y^3 + 1033*y^2 + 94*y+ 1)*x^6/6! + (10395*y^5 + 36330*y^4 + 26229*y^3 + 4953*y^2 + 213*y + 1)*x^7/7! + (135135*y^6 + 640710*y^5 + 674520*y^4 + 213511*y^3 + 20370*y^2 + 459*y + 1)*x^8/8! + (2027025*y^7 + 12588345*y^6 + 18127935*y^5 + 8559675*y^4 + 1421225*y^3 + 76056*y^2 + 960*y + 1)*x^9/9! + (34459425*y^8 + 273544425*y^7 + 515903850*y^6 + 337805535*y^5 + 85654979*y^4 + 8283234*y^3 + 266334*y^2 + 1972*y + 1)*x^10/10! +...
such that A( x - y*G(x,y), y)  =  x + (1-y)*G(x,y)
also,
A(x,y) = x + G( y*A(x,y) + (1-y)*x, y)
where G(x,y) = Integral A(x,y).
...
This triangle of coefficients T(n,k) of x^n*y^k/n! in g.f. A(x,y) begins:
1;
1, 0;
1, 3, 0;
1, 13, 15, 0;
1, 38, 165, 105, 0;
1, 94, 1033, 2310, 945, 0;
1, 213, 4953, 26229, 36330, 10395, 0;
1, 459, 20370, 213511, 674520, 640710, 135135, 0;
1, 960, 76056, 1421225, 8559675, 18127935, 12588345, 2027025, 0;
1, 1972, 266334, 8283234, 85654979, 337805535, 515903850, 273544425, 34459425, 0;
1, 4007, 892542, 44013478, 729292193, 4822487682, 13506364410, 15631793100, 6529047525, 654729075, 0;
1, 8089, 2900353, 218797958, 5531376285, 57226590953, 264482764305, 555756298020, 505173143475, 170116046100, 13749310575, 0; ...
in which the diagonal equals A001147 (odd double factorials), and the row sums yield A210949.
...
APPLICATION.
Given F(x) such that
F(x - Integral p*F(x) dx) = x + Integral q*F(x) dx
then
F(x) = Sum_{n>=1} a(n)*x^n/n!
where
a(n) = Sum_{k=0..n-1} A277410(n,k) * p^k * (p+q)^(n-k-1) for n>=1.
EXAMPLES.
A210949(n) = Sum_{k=0..n-1} A277410(n,k).
A277403(n) = Sum_{k=0..n-1} A277410(n,k) * 2^(n-k-1).
A279843(n) = Sum_{k=0..n-1} A277410(n,k) * 3^(n-k-1).
A279844(n) = Sum_{k=0..n-1} A277410(n,k) * 2^k * 3^(n-k-1).
A279845(n) = Sum_{k=0..n-1} A277410(n,k) * 2^k.
A280570(n) = Sum_{k=0..n-1} A277410(n,k) * 4^(n-k-1).
A280571(n) = Sum_{k=0..n-1} A277410(n,k) * 3^k * 4^(n-k-1).
A280572(n) = Sum_{k=0..n-1} A277410(n,k) * 5^(n-k-1).
A280573(n) = Sum_{k=0..n-1} A277410(n,k) * 2^k * 5^(n-k-1).
A280574(n) = Sum_{k=0..n-1} A277410(n,k) * 3^k * 5^(n-k-1).
A280575(n) = Sum_{k=0..n-1} A277410(n,k) * 4^k * 5^(n-k-1).
...
COLUMN GENERATING FUNCTIONS.
From _Paul D. Hanna_, Nov 05 2016: (Start)
_Colin Barker_ observed that column 1 of this triangle (A277411) appears to have the o.g.f. x*(3*x-2*x^2) / ((1-x)^3*(1-2*x)).
This observation led to the following conjecture.
Let F(k,x) = o.g.f. of column k in this triangle,
then
F(k,x) = P(k,x) * x^(k+1) / Product_{j=0..k} (1 - (j+1)*x)^(2*(k-j)+1)
where P(k,x) is a polynomial in x with degree k*(k+1) for k>=0.
Example:
F(0,x) = x/(1-x) ;
F(1,x) = P(1,x)*x^2/((1-x)^3*(1-2*x)) ;
F(2,x) = P(2,x)*x^3/((1-x)^5*(1-2*x)^3*(1-3*x)) ;
F(3,x) = P(3,x)*x^4/((1-x)^7*(1-2*x)^5*(1-3*x)^3*(1-4*x)) ;
...
The polynomials P(k,x) begin:
P(0,x) = 1 ;
P(1,x) = 3*x - 2*x^2 ;
P(2,x) = 15*x - 45*x^2 - 2*x^3 + 106*x^4 - 92*x^5 + 24*x^6 ;
P(3,x) = 105*x - 840*x^2 + 504*x^3 + 16321*x^4 - 75880*x^5 + 154483*x^6 - 152077*x^7 + 39208*x^8 + 59000*x^9 - 60336*x^10 + 23328*x^11 - 3456*x^12 ;
P(4,x) = 945*x - 15645*x^2 + 32445*x^3 + 1255770*x^4 - 15120061*x^5 + 86803308*x^6 - 291640845*x^7 + 529758178*x^8 - 50236668*x^9 - 2553002523*x^10 + 7695202852*x^11 - 12713196156*x^12 + 13351222596*x^13 - 8752472980*x^14 + 2871967920*x^15 + 387984096*x^16 - 884504448*x^17 + 427064832*x^18 - 100694016*x^19 + 9953280*x^20 ;
P(5,x) = 10395*x - 305235*x^2 + 1299375*x^3 + 77300220*x^4 - 1834009998*x^5 + 21447595316*x^6 - 156933684108*x^7 + 721294719700*x^8 - 1490891586137*x^9 - 5868653004882*x^10 + 70213320019895*x^11 - 359261247450016*x^12 + 1234731543184308*x^13 - 3081038591203028*x^14 + 5553265322783926*x^15 - 6518085613542516*x^16 + 2256970375232288*x^17 + 9498116639867573*x^18 - 25485484994020128*x^19 + 37162639109810884*x^20 - 37419816866322296*x^21 + 27200926921683600*x^22 - 14055671260790656*x^23 + 4698364855901568*x^24 - 583485067952640*x^25 - 341605998065664*x^26 + 237336648708096*x^27 - 72380729917440*x^28 + 11910492979200*x^29 - 859963392000*x^30 ;
...
where the coefficient of x^(k*(k+1)) in P(k,x) equals A059332(k+1).
(End)
		

Crossrefs

Cf. A210949 (row sums), A067146, A001147 (diagonal), A277411 (column 1), A277412 (diagonal).

Programs

  • PARI
    {T(n, k) = my(A=x); for(i=1, n, A = x + subst(intformal(A +x*O(x^n)), x, y*A + (1-y)*x ) ); n!*polcoeff(polcoeff(A,n,x),k,y)}
    for(n=1, 12, for(k=0, n-1, print1(T(n, k), ", ")); print(""))

Formula

Given g.f. A(x,y), define G(x,y) = Integral A(x,y) dx, then
(1) A(x,y) = x + G( y*A(x,y) + (1-y)*x, y),
(2) y*A(x,y) + (1-y)*x = Series_Reversion( x - y*G(x,y) ),
(3) y*x + (1-y)*B(x,y) = Series_Reversion( x + (1-y)*G(x,y) ), where B( A(x,y), y) = x.
(4) A(x,y) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) G(x,y)^n / n!.
In formulas 2 and 3, the series reversion is taken with respect to variable x.