A277422 a(n) = n!*LaguerreL(n, -8*n).
1, 9, 322, 19446, 1649688, 180184120, 24070390992, 3801662863152, 692979602529664, 143184960501077376, 33069665092749868800, 8442378658666161822976, 2360674573114695421197312, 717531421372546588398529536, 235551703250624390582942574592
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..250
- Eric Weisstein's World of Mathematics, Laguerre Polynomial
- Wikipedia, Laguerre polynomials
Crossrefs
Programs
-
Magma
[Factorial(n)*(&+[Binomial(n,k)*(8)^k*n^k/Factorial(k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, May 16 2018
-
Mathematica
Table[n!*LaguerreL[n, -8*n], {n, 0, 20}] Flatten[{1, Table[n!*Sum[Binomial[n, k] * 8^k * n^k / k!, {k, 0, n}], {n, 1, 20}]}]
-
PARI
for(n=0, 30, print1(n!*sum(k=0,n, binomial(n,k)*(8)^k*n^k/k!), ", ")) \\ G. C. Greubel, May 16 2018
Formula
a(n) = n! * Sum_{k=0..n} binomial(n, k) * 8^k * n^k / k!.
a(n) ~ sqrt(2 + 5/sqrt(6)) * (5 + 2*sqrt(6))^n * exp((-5 + 2*sqrt(6))*n) * n^n / 2.
Comments