cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277492 Number of vertices in the metrically regular triangulation of the n-th approximation of the Koch snowflake fractal.

Original entry on oeis.org

3, 13, 96, 780, 6684, 58812, 523932, 4693884, 42158940, 379086396, 3410401308, 30688106748, 276170940636, 2485450385340, 22368701146524, 201316901032572, 1811846472148572, 16306595700758844, 146759271112516380, 1320833079235394556
Offset: 0

Views

Author

Dintle N Kagiso, Oct 17 2016

Keywords

Comments

A triangulation is metrically regular if all its triangles are congruent.

Examples

			a(1) = 1+2+3+4+3 = 13 because an equilateral triangle can be cut up into 9 triangles with side length one-third which have 1+2+3+4 = 10 vertices and 3 further triangles yield 3 additional vertices.
		

Crossrefs

Cf. A277491.

Programs

  • Maple
    L:=[3,13,96]: for k from 4 to 34 do: L:=[op(L),13*L[k-1]-36*L[k-2]]: od: print(L);
  • Mathematica
    Table[(Boole[n == 0] 35/36) + (44*9^# + 21*4^#)/5 &[n - 1], {n, 0, 19}] (* or *)
    CoefficientList[Series[(3 - 26 x + 35 x^2)/((1 - 4 x) (1 - 9 x)), {x, 0, 19}], x] (* Michael De Vlieger, Oct 21 2016 *)
    LinearRecurrence[{13,-36},{3,13,96},30] (* Harvey P. Dale, Sep 17 2024 *)

Formula

a(n+1) = (1/5) * (44*9^n + 21*4^n) for all n > -1.
a(0)=3, a(1)=13, a(2)=96, a(n) = 13*a(n-1)-36*a(n-2) for n > 2.
G.f.: (3-26*x+35*x^2)/((1-4*x)*(1-9*x)).