A381142
Expansion of e.g.f. exp( -LambertW(-sin(x)) ).
Original entry on oeis.org
1, 1, 3, 15, 113, 1137, 14355, 218239, 3883585, 79218721, 1822842243, 46717337007, 1319891043569, 40759239427857, 1365932381706963, 49373610759452575, 1914856819983977473, 79316216447375396161, 3494800326874932467331, 163218136611270923087439
Offset: 0
-
a136630(n, k) = 1/(2^k*k!)*sum(j=0, k, (-1)^(k-j)*(2*j-k)^n*binomial(k, j));
a(n) = sum(k=0, n, (k+1)^(k-1)*I^(n-k)*a136630(n, k));
A277500
E.g.f.: -LambertW(-tan(x)).
Original entry on oeis.org
0, 1, 2, 11, 80, 821, 10608, 167215, 3105024, 66433129, 1609025024, 43521156755, 1300287942656, 42528924900125, 1511407185512448, 57992816331075511, 2389444376908726272, 105219795048784564945, 4931495123285481881600, 245105773365008603770907
Offset: 0
-
S:= series(-LambertW(-tan(x)),x,31):
seq(coeff(S,x,n)*n!,n=0..30); # Robert Israel, Mar 09 2017
-
CoefficientList[Series[-LambertW[-Tan[x]], {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^50); concat([0], Vec(serlaplace(-lambertw(-tan(x))))) \\ G. C. Greubel, Nov 07 2017
A277499
E.g.f.: -sin(LambertW(-x)).
Original entry on oeis.org
0, 1, 2, 8, 52, 476, 5646, 82368, 1426888, 28623376, 652516090, 16660233600, 470930272572, 14598765522368, 492441140292934, 17955574113204224, 703714660937658128, 29500170665998713088, 1317136516654501334898, 62399954043306802391040
Offset: 0
-
S:= series(-sin(LambertW(-x)),x,31):
seq(coeff(S,x,n)*n!, n=0..30); # Robert Israel, Oct 30 2016
-
CoefficientList[Series[-Sin[LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]!
-
x='x+O('x^50); concat([0], Vec(serlaplace(-sin(lambertw(-x))))) \\ G. C. Greubel, Nov 08 2017
Showing 1-3 of 3 results.