cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A385424 Expansion of e.g.f. exp( -LambertW(-arcsin(x)) ).

Original entry on oeis.org

1, 1, 3, 17, 137, 1465, 19499, 311873, 5829073, 124796081, 3012319315, 80960234577, 2398138520409, 77630951407529, 2726829925494011, 103300796618253825, 4198494172961579169, 182239547736082960737, 8414068749731088539299, 411754575622058760824593
Offset: 0

Views

Author

Seiichi Manyama, Jun 28 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-asin(x)))))

Formula

E.g.f. A(x) satisfies A(x) = exp( arcsin(x) * A(x) ).
a(n) = Sum_{k=0..n} (k+1)^(k-1) * A385343(n,k).
a(n) ~ n^(n-1) / (sqrt(cos(exp(-1))) * sin(exp(-1))^(n - 1/2) * exp(n - 3/2)). - Vaclav Kotesovec, Jun 28 2025

A277503 E.g.f.: -LambertW(-arctan(x)).

Original entry on oeis.org

0, 1, 2, 7, 48, 469, 5584, 80235, 1367040, 26840841, 595623680, 14752565807, 403579762688, 12084385256605, 393093330282496, 13804177426246995, 520496287836012544, 20973496057176404881, 899452315670554017792, 40903215737685386469847
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 18 2016

Keywords

Crossrefs

Cf. A277502.

Programs

  • Mathematica
    CoefficientList[Series[-LambertW[-ArcTan[x]], {x, 0, 20}], x] * Range[0, 20]!
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(-lambertw(-atan(x))))) \\ G. C. Greubel, Nov 12 2017

Formula

a(n) ~ sqrt(sin(2*exp(-1))/2) * exp(-n + 1/2) * n^(n-1) / tan(exp(-1))^n.
Showing 1-2 of 2 results.