A277548 Numbers k such that k/5^m == 4 (mod 5), where 5^m is the greatest power of 5 that divides k.
4, 9, 14, 19, 20, 24, 29, 34, 39, 44, 45, 49, 54, 59, 64, 69, 70, 74, 79, 84, 89, 94, 95, 99, 100, 104, 109, 114, 119, 120, 124, 129, 134, 139, 144, 145, 149, 154, 159, 164, 169, 170, 174, 179, 184, 189, 194, 195, 199, 204, 209, 214, 219, 220, 224, 225, 229
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[5, 1] (* A277550 *) p[5, 2] (* A277551 *) p[5, 3] (* A277555 *) p[5, 4] (* A277548 *)
-
PARI
isok(n) = n/5^valuation(n, 5) % 5 == 4; \\ Michel Marcus, Oct 21 2016
Formula
Conjecture: a(n) = 4*n if and only if n is in A033042. - David A. Corneth, Oct 23 2016
Comments