A277586 Numerator of Sum_{k=0..n} (2^k * (k!)^2)/(2k + 1)!.
1, 4, 22, 32, 488, 5408, 70544, 23552, 1202048, 22846976, 22850816, 40431616, 2628156416, 1576923136, 228655904768, 416962576384, 2362792902656, 7088385949696, 262270410489856, 52454094798848, 2150618140770304, 92476585387491328, 462382939977023488
Offset: 0
Examples
b(0) = 1, so a(0) = 1. b(1) = 4/3, so a(1) = 4. b(2) = 22/15, so a(2) = 22. b(3) = 32/21, so a(3) = 32. b(4) = 488/315, so a(4) = 488.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1154
- Eric Weisstein's World of Mathematics, Pi Formulas
Crossrefs
Programs
-
PARI
a(n) = numerator(sum(k=0, n, (2^k * (k!)^2)/(2*k + 1)!)); \\ Michel Marcus, Oct 22 2016
Formula
a(n) = numerator(Sum_{k=0..n} (2^k)/A002457(k)).
Comments