A277595 Numbers k such that k/10^m == 8 mod 10, where 10^m is the greatest power of 10 that divides k.
8, 18, 28, 38, 48, 58, 68, 78, 80, 88, 98, 108, 118, 128, 138, 148, 158, 168, 178, 180, 188, 198, 208, 218, 228, 238, 248, 258, 268, 278, 280, 288, 298, 308, 318, 328, 338, 348, 358, 368, 378, 380, 388, 398, 408, 418, 428, 438, 448, 458, 468, 478, 480, 488
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 460; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[10, 1] (* A277588 *) p[10, 2] (* A277589 *) p[10, 3] (* A277590 *) p[10, 4] (* A277591 *) p[10, 5] (* A277592 *) p[10, 6] (* A277593 *) p[10, 7] (* A277594 *) p[10, 8] (* A277595 *) p[10, 9] (* A277596 *) fQ[n_]:=Module[{sp=Split[IntegerDigits[n]]},If[MemberQ[sp[[-1]],0],sp = Drop[ sp, -1]];MemberQ[sp[[-1]],8]]; Select[Range[500],fQ] (* Harvey P. Dale, Sep 14 2018 *)
-
PARI
is(n)=n && n/10^valuation(n,10)%10==6 \\ Charles R Greathouse IV, Jan 31 2017
Comments