cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277611 Expansion of 1 / (1 - Sum_{k>=1} k^(k-2) * x^k ).

Original entry on oeis.org

1, 1, 2, 6, 27, 180, 1678, 20388, 305331, 5423511, 111282445, 2587931469, 67239205808, 1929910531883, 60636166356164, 2069775112992573, 76268207153351225, 3017346008698599752, 127561003043924116908, 5738904556162964523209, 273764048456544759900846, 13802374108958236134168506, 733335098861491664742838394, 40953333749038944871704984923, 2398217239830108487402017089693, 146949291558772355319517897103987
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2016

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 27*x^4 + 180*x^5 + 1678*x^6 + 20388*x^7 + 305331*x^8 + 5423511*x^9 + 111282445*x^10 + 2587931469*x^11 + 67239205808*x^12 +...
such that A(x) = 1 / (1 - Sum_{k>=1} k^(k-2) * x^k ).
The logarithm of the g.f. begins:
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 83*x^4/4 + 746*x^5/5 + 8817*x^6/6 + 129340*x^7/7 + 2261195*x^8/8 + 45815431*x^9/9 + 1054594428*x^10/10 + 27167908186*x^11/11 + 774186515309*x^12/12 + 24174818590638*x^13/13 + 820795732075686*x^14/14 + 30104104733233598*x^15/15 +...
which equals the sum
log(A(x)) = (x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1296*x^6 +...) +
(x^2 + 2*x^3 + 7*x^4 + 38*x^5 + 291*x^6 + 2938*x^7 +...)/2 +
(x^3 + 3*x^4 + 12*x^5 + 67*x^6 + 507*x^7 + 5001*x^8 +...)/3 +
(x^4 + 4*x^5 + 18*x^6 + 104*x^7 + 783*x^8 + 7572*x^9 +...)/4 +
(x^5 + 5*x^6 + 25*x^7 + 150*x^8 + 1130*x^9 + 10751*x^10 +...)/5 +
(x^6 + 6*x^7 + 33*x^8 + 206*x^9 + 1560*x^10 + 14652*x^11 +...)/6 +
(x^7 + 7*x^8 + 42*x^9 + 273*x^10 + 2086*x^11 + 19404*x^12 +...)/7 +
... +
(x + 2^0*x^2 + 3^1*x^3 + 4^2*x^4 + 5^3*x^5 +...+ k^(k-2)*x^k +...)^n/n +
...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - Sum[k^(k-2) * x^k, {k, 1, 20}]), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 06 2016 *)
  • PARI
    {a(n) = polcoeff( 1/(1 - sum(k=1, n+1, k^(k-2) * x^k +x*O(x^n)) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ n^(n-2) * (1 + 2*exp(-1)/n). - Vaclav Kotesovec, Nov 06 2016
a(0) = 1; a(n) = Sum_{k=1..n} k^(k-2) * a(n-k). - Ilya Gutkovskiy, Feb 07 2020