cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277613 Logarithmic derivative of the g.f. of the solid partitions A000293.

Original entry on oeis.org

1, 7, 19, 47, 76, 145, 183, 319, 433, 762, 1068, 1625, 1457, 511, -2696, -7617, -12494, -8999, 14802, 78682, 195984, 363458, 530289, 574297, 252976, -820475, -3259007, -7929105, -15918795, -27966750, -42783874, -52969921, -37772397, 47098898, 278012363, 759015293, 1583148046, 2729030066, 3860814119, 4015793914, 1214574612, -7871995868, -27884564061, -63760120938, -117678872282, -182313402679, -228194585696, -183355932567, 93528356566, 836233409412, 2360489258476, 4956621402741, 8577450776595, 12176709992155, 12572248705543, 2874527812671, -29026344726969, -100513507605919, -229939345736773, -423043591887710, -643162163240861, -757839109104688, -458886747576888, 831588355306815, 4020413344163097, 10249469548463477, 20417504944664974, 33937902760293134, 46224437161712292, 44445354551818961, 1635692222011481, -129140996172417587
Offset: 1

Views

Author

Paul D. Hanna, Nov 20 2016

Keywords

Comments

Based on the solid partitions calculated by Suresh Govindarajan and listed in A000293.
Finding a formula for this sequence is an unsolved problem; at first it was thought to be A278403, where: Sum_{n>=1} A278403(n)*x^n/n = log( Product_{n>=1} 1/(1 - x^n)^(n*(n+1)/2) ).

Examples

			L.g.f.: L(x) = x + 7*x^2/2 + 19*x^3/3 + 47*x^4/4 + 76*x^5/5 + 145*x^6/6 + 183*x^7/7 + 319*x^8/8 + 433*x^9/9 + 762*x^10/10 + 1068*x^11/11 + 1625*x^12/12 +...
such that
exp(L(x)) = 1 + x + 4*x^2 + 10*x^3 + 26*x^4 + 59*x^5 + 140*x^6 + 307*x^7 + 684*x^8 + 1464*x^9 + 3122*x^10 + 6500*x^11 + 13426*x^12 +...+ A000293(n)*x^n +...
		

Crossrefs