cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277638 Binomial partial sums of sequence A007004.

Original entry on oeis.org

1, 4, 37, 520, 8803, 165292, 3320023, 69943804, 1526981575, 34271322316, 786371041603, 18372739163632, 435772652437381, 10468369504009060, 254238148448959729, 6233226769739934964, 154092763036678601551, 3837301178450916902428, 96181503100227675085675
Offset: 0

Views

Author

Emanuele Munarini, Oct 25 2016

Keywords

Crossrefs

Cf. A007004.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Multinomial[k, k, k]/(k+1), {k, 0, n}], {n, 0, 100}]
  • Maxima
    makelist(sum(binomial(n, k)*multinomial_coeff(k, k, k)/(k+1), k, 0, n), n, 0, 12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * multinomial(k,k,k)/(k+1).
a(n) = hypergeometric(1/3,2/3,-n; 1,2; -27).
a(n) == 1 (mod 3) for all natural n.
E.g.f.: exp(t) * hypergeometric(1/3,2/3; 1,2; 27*t).
From Vaclav Kotesovec, Oct 26 2016: (Start)
Recurrence: n*(n+1)*a(n) = 2*(3*n-1)*(5*n-3)*a(n-1) - (n-1)*(57*n-56)*a(n-2) + 28*(n-2)*(n-1)*a(n-3).
a(n) ~ 2^(2*n+3) * 7^(n+2) / (3^(11/2) * Pi * n^2).
(End)
Diff. eq. satisfied by the ordinary g.f.: t*(1-t)^2*(1-28*t)*A''(t)+2*(1-t)*(1-2*t)*(1-28*t)*A'(t)-2*(4-29*t+28*t^2)*A(t)=0. - Emanuele Munarini, Oct 28 2016
G.f.: hypergeom([1/3, 2/3],[2],27*x/(1-x))/(1-x). - Mark van Hoeij, Nov 28 2024