cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).