cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277648 Triangle T(n,k) = A277647(n, A005117(k)), read by rows.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 5, 4, 3, 3, 3, 2, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Jason Kimberley, Nov 10 2016

Keywords

Comments

The columns of this triangle are the columns of A277647 with squarefree index.
Other that the first (with length 1), row n has length A278100(n).

Examples

			Triangle begins:
1;
2, 1, 1;
3, 2, 1, 1, 1, 1;
4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
...
where the first 11 terms of A005117(k) are
1, 2, 3, 5, 6, 7,10,11,13,14,15.
		

Crossrefs

Programs

  • Magma
    A277647:=func;
    A277648_row:=funcA277647(n,k):k in[1..n^2]|IsSquarefree(k)]>;
    &cat[A277648_row(n):n in[1..8]];
    
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[SquareFreeQ@ k] Floor[n/Sqrt@ k], {n, 8}, {k, n^2}] (* Michael De Vlieger, Nov 24 2016 *)
  • PARI
    row(n)={apply(k->sqrtint(n^2\k), select(issquarefree,[1..n^2]))}
    for(n=1, 6, print(row(n))) \\ Andrew Howroyd, Feb 28 2018

Formula

T(n,k) = A000196(A277646(n,A005117(k))).
T(n,k) sqrt(A005117(k)) <= n < (T(n,k)+1) sqrt(A005117(k)).

Extensions

Missing a(3009) in b-file inserted by Andrew Howroyd, Feb 28 2018