cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277666 Number A(n,k) of n-length words over a k-ary alphabet {a_1,a_2,...,a_k} avoiding consecutive letters a_i, a_{i+1}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 13, 16, 5, 1, 0, 1, 6, 21, 42, 37, 6, 1, 0, 1, 7, 31, 88, 136, 86, 7, 1, 0, 1, 8, 43, 160, 369, 440, 200, 8, 1, 0, 1, 9, 57, 264, 826, 1547, 1423, 465, 9, 1, 0, 1, 10, 73, 406, 1621, 4264, 6486, 4602, 1081, 10, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Oct 26 2016

Keywords

Examples

			A(3,3) = 16: 000, 002, 020, 021, 022, 100, 102, 110, 111, 200, 202, 210, 211, 220, 221, 222 (using ternary alphabet {0, 1, 2}).
Square array A(n,k) begins:
  1, 1, 1,   1,    1,     1,      1,      1, ...
  0, 1, 2,   3,    4,     5,      6,      7, ...
  0, 1, 3,   7,   13,    21,     31,     43, ...
  0, 1, 4,  16,   42,    88,    160,    264, ...
  0, 1, 5,  37,  136,   369,    826,   1621, ...
  0, 1, 6,  86,  440,  1547,   4264,   9953, ...
  0, 1, 7, 200, 1423,  6486,  22012,  61112, ...
  0, 1, 8, 465, 4602, 27194, 113632, 375231, ...
		

Crossrefs

Columns k=0-10 give: A000007, A000012, A000027(n+1), A095263(n+1), A277667, A277668, A277669, A277670, A277671, A277672, A096261.
Rows n=0-2 give: A000012, A001477, A002061 (for k>0).
Main diagonal gives A277673.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
          -add((-1)^j*(k+1-j)*A(n-j, k), j=1..k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1, -Sum[(-1)^j*(k + 1 - j)* A[n-j, k], {j, 1, k}]]];
    Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 08 2018, from Maple *)

Formula

G.f. of column k: 1/(1 + Sum_{j=1..k} (k+1-j)*(-x)^j).