A095263
a(n+3) = 3*a(n+2) - 2*a(n+1) + a(n).
Original entry on oeis.org
1, 3, 7, 16, 37, 86, 200, 465, 1081, 2513, 5842, 13581, 31572, 73396, 170625, 396655, 922111, 2143648, 4983377, 11584946, 26931732, 62608681, 145547525, 338356945, 786584466, 1828587033, 4250949112, 9882257736, 22973462017, 53406819691
Offset: 1
a(9) = 1081 = 3*465 - 2*200 + 86.
M^9 * [1 0 0] = [a(7) a(8) a(9)] = [200 465 1081].
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 37*x^5 + 86*x^6 + 200*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- C. R. Dedrickson III, Compositions, Bijections, and Enumerations Thesis, Jack N. Averitt College of Graduate Studies, Georgia Southern University, 2012.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1).
-
I:=[1,3,7]; [n le 3 select I[n] else 3*Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 12 2021
-
A:= gfun:-rectoproc({a(n+3)=3*a(n+2)-2*a(n+1)+a(n),a(1)=1,a(2)=3,a(3)=7},a(n),remember):
seq(A(n),n=1..100); # Robert Israel, Sep 15 2014
-
a[1]=1; a[2]=3; a[3]=7; a[n_]:= a[n]= 3a[n-1] -2a[n-2] +a[n-3]; Table[a[n], {n, 22}] (* Or *)
a[n_]:= (MatrixPower[{{0,1,2,3}, {1,2,3,0}, {2,3,0,1}, {3,0,1,2}}, n].{{1}, {0}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 22}] (* Robert G. Wilson v, Jun 16 2004 *)
RecurrenceTable[{a[1]==1,a[2]==3,a[3]==7,a[n+3]==3a[n+2]-2a[n+1]+a[n]},a,{n,30}] (* Harvey P. Dale, Sep 17 2022 *)
-
[sum( binomial(n+k+1,3*k+2) for k in (0..(n-1)//2)) for n in (1..30)] # G. C. Greubel, Apr 12 2021
A096261
Number of n-tuples of 0,1,2,3,4,5,6,7,8,9 without consecutive digits.
Original entry on oeis.org
1, 10, 91, 828, 7534, 68552, 623756, 5675568, 51642104, 469892512, 4275561136, 38903414208, 353982925023, 3220897542254, 29307009588171, 266665052127080, 2426390512890816, 22077774624328776, 200886102122914612
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-9,8,-7,6,-5,4,-3,2,-1).
-
R:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( 1/(1-10*x+9*x^2-8*x^3+7*x^4-6*x^5+5*x^6-4*x^7+3*x^8-2*x^9+x^10) )); // G. C. Greubel, Apr 17 2021
-
A096261:=proc(n,b::nonnegint) local s,i; option remember; if n<0 then RETURN(0) fi; if n=0 then RETURN(1) fi; s:=0; for i from 1 to b do s:=s+(-1)^(i-1)*(b-i+1)*A096261(n-i,b); od; end; seq(A096261(i,10),i=0..20);
-
a[n_]:= a[n]= If[n<0, 0, If[n==0, 1, 10a[n-1] -9a[n-2] +8a[n-3] -7a[n-4] +6a[n-5] -5a[n-6] +4a[n-7] -3a[n-8] +2a[n-9] -a[n-10] ]]; Table[ a[n], {n,0,25}] (* Robert G. Wilson v, Aug 02 2004 *)
LinearRecurrence[{10,-9,8,-7,6,-5,4,-3,2,-1}, {1,10,91,828,7534,68552,623756, 5675568,51642104,469892512}, 30] (* Harvey P. Dale, Dec 16 2013 *)
-
def A096261_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-10*x+9*x^2-8*x^3+7*x^4-6*x^5+5*x^6-4*x^7+3*x^8-2*x^9+x^10) ).list()
A096261_list(30) # G. C. Greubel, Apr 17 2021
A277668
Number of n-length words over a 5-ary alphabet {a_1,a_2,...,a_5} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 5, 21, 88, 369, 1547, 6486, 27194, 114017, 478042, 2004299, 8403476, 35233470, 147724276, 619367372, 2596837513, 10887827441, 45649674187, 191396563242, 802473294131, 3364550422879, 14106637106664, 59145260271900, 247979854176461, 1039711513563070
Offset: 0
-
a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
<0|0|0|0|1>, <1|-2|3|-4|5>>^n)[5, 5]:
seq(a(n), n=0..30);
-
LinearRecurrence[{5,-4,3,-2,1},{1,5,21,88,369},30] (* Harvey P. Dale, Oct 08 2017 *)
A277667
Number of n-length words over a quaternary alphabet {a_1,a_2,...,a_4} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 4, 13, 42, 136, 440, 1423, 4602, 14883, 48132, 155660, 503408, 1628033, 5265096, 17027441, 55067134, 178088372, 575941872, 1862609199, 6023720790, 19480850935, 63001517896, 203748351160, 658926832032, 2130984459505, 6891652526348, 22287762039781
Offset: 0
a(3) = 42: 000, 002, 003, 020, 021, 022, 030, 031, 032, 033, 100, 102, 103, 110, 111, 113, 130, 131, 132, 133, 200, 202, 203, 210, 211, 213, 220, 221, 222, 300, 302, 303, 310, 311, 313, 320, 321, 322, 330, 331, 332, 333 (using alphabet {0, 1, 2, 3}).
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|2|-3|4>>^n)[4, 4]:
seq(a(n), n=0..30);
A277669
Number of n-length words over a 6-ary alphabet {a_1,a_2,...,a_6} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 6, 31, 160, 826, 4264, 22012, 113632, 586599, 3028182, 15632291, 80698096, 416585304, 2150525528, 11101591924, 57309407232, 295846593873, 1527239790702, 7884023093755, 40699450421136, 210101523661770, 1084600646648368, 5599000626972168, 28903549078371648
Offset: 0
-
a:= n-> (<<0|1|0|0|0|0>, <0|0|1|0|0|0>, <0|0|0|1|0|0>,
<0|0|0|0|1|0>, <0|0|0|0|0|1>, <-1|2|-3|4|-5|6>>^n)[6$2]:
seq(a(n), n=0..30);
A277670
Number of n-length words over a 7-ary alphabet {a_1,a_2,...,a_7} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 7, 43, 264, 1621, 9953, 61112, 375231, 2303939, 14146313, 86859145, 533319959, 3274614074, 20106311704, 123453866991, 758013577995, 4654245334143, 28577324020619, 175466351588409, 1077373112945523, 6615130559166437, 40617267861064920, 249392273325801363
Offset: 0
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
-add((-1)^j*(8-j)*a(n-j), j=1..7)))
end:
seq(a(n), n=0..25);
A277671
Number of n-length words over an 8-ary alphabet {a_1,a_2,...,a_8} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 8, 57, 406, 2892, 20600, 146736, 1045216, 7445184, 53032832, 377758463, 2690813426, 19166948203, 136528196220, 972504760052, 6927254109472, 49343562590512, 351479407373632, 2503624937520704, 17833584831080448, 127030508108889857, 904851724611169300
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-7,6,-5,4,-3,2,-1)
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
-add((-1)^j*(9-j)*a(n-j), j=1..8)))
end:
seq(a(n), n=0..25);
-
LinearRecurrence[{8,-7,6,-5,4,-3,2,-1},{1,8,57,406,2892,20600,146736,1045216},30] (* Harvey P. Dale, May 15 2018 *)
A277672
Number of n-length words over a 9-ary alphabet {a_1,a_2,...,a_9} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 9, 73, 592, 4801, 38935, 315754, 2560693, 20766637, 168412696, 1365788605, 11076234500, 89825738954, 728466283251, 5907695633935, 47910065991605, 388539722685585, 3150968653039294, 25553638078006016, 207234184444162395, 1680622033979603605
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-8,7,-6,5,-4,3,-2,1)
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
-add((-1)^j*(10-j)*a(n-j), j=1..9)))
end:
seq(a(n), n=0..25);
-
LinearRecurrence[{9,-8,7,-6,5,-4,3,-2,1},{1,9,73,592,4801,38935,315754,2560693,20766637},30] (* Harvey P. Dale, Apr 03 2019 *)
A277673
Number of n-length words over an n-ary alphabet {a_1,a_2,...,a_n} avoiding consecutive letters a_i, a_{i+1}.
Original entry on oeis.org
1, 1, 3, 16, 136, 1547, 22012, 375231, 7445184, 168412696, 4275561136, 120338946469, 3718175865856, 125094920949797, 4551798150123456, 178094082550301368, 7455514741874966528, 332495821030327545527, 15737024371475868676864, 787813565550480151088691
Offset: 0
a(3) = 16: 000, 002, 020, 021, 022, 100, 102, 110, 111, 200, 202, 210, 211, 220, 221, 222 (using ternary alphabet {0, 1, 2}).
-
b:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
-add((-1)^j*(k+1-j)*b(n-j, k), j=1..k)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
-
b[n_, k_] := b[n, k] = If[n < 0, 0, If[n == 0, 1,
-Sum[(-1)^j (k+1-j) b[n-j, k], {j, 1, k}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 02 2021, after Alois P. Heinz *)
Showing 1-9 of 9 results.
Comments