A277675 Numbers k such that d(k+2) = d(k+1), where d(m) is the number of digits in the base-m representation of m!.
1, 3, 7, 11, 15, 19, 24, 28, 33, 38, 43, 48, 54, 59, 64, 70, 75, 81, 87, 93, 98, 104, 110, 116, 122, 128, 135, 141, 147, 153, 159, 166, 172, 179, 185, 192, 198, 205, 211, 218, 224, 231, 238, 244, 251, 258, 265, 271, 278, 285, 292, 299, 306, 313, 320, 327
Offset: 1
Examples
(See A277674.)
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
d = Differences@Array[Floor@Log[#, #!] &, 10000, 2]; (* Robert G. Wilson v, Oct 27 2016 *) u = Flatten[Position[d, 0]]; (* A277675 *) v = Flatten[Position[d, 1]]; (* A277676 *) SequencePosition[Table[IntegerLength[n!,n],{n,2,350}],{x_,x_}][[All,1]] (* Harvey P. Dale, Aug 21 2022 *)
-
PARI
d(n) = #digits(n!, n); isok(n) = d(n+2) == d(n+1); \\ Michel Marcus, Oct 29 2016
Comments