cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210021 Number of binary words of length n containing no subword 11011.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 116, 225, 437, 849, 1649, 3202, 6217, 12071, 23438, 45510, 88368, 171586, 333171, 646922, 1256136, 2439055, 4735945, 9195847, 17855697, 34670640, 67320433, 130716961, 253814826, 492835556, 956945224, 1858113016, 3607922263, 7005549684
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2012

Keywords

Examples

			a(7) = 116 because among the 2^7 = 128 binary words of length 7 only 12, namely 0011011, 0110110, 0110111, 0111011, 1011011, 1101100, 1101101, 1101110, 1101111, 1110110, 1110111 and 1111011 contain the subword 11011.
		

Crossrefs

Column k=27 of A209972. Cf. A276785.
Column k=0 of A277678.

Programs

  • Magma
    I:=[1,2,4,8,16]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-3)+Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Oct 24 2016
  • Maple
    a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, <0|0|0|0|1>, <1|1|-1|0|2>>^n. <<1, 2, 4, 8, 16>>)[1, 1]: seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{2, 0, -1, 1, 1}, {1, 2, 4, 8, 16}, 40] (* Vincenzo Librandi, Oct 24 2016 *)

Formula

G.f.: -(x^4+x^3+1)/(x^5+x^4-x^3+2*x-1).
a(n) = 2^n if n<5, and a(n) = 2*a(n-1) -a(n-3) +a(n-4) +a(n-5) otherwise.

A276785 Number of binary strings of length n containing the substring 11011.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 12, 31, 75, 175, 399, 894, 1975, 4313, 9330, 20026, 42704, 90558, 191117, 401654, 841016, 1755249, 3652663, 7581369, 15698735, 32438224, 66897295, 137718495, 283056086, 580906268, 1190538424, 2436854280, 4982012329, 10174319500, 20756971236, 42306806495, 86153127395
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2016, following a suggestion from Rick L. Shepherd

Keywords

Crossrefs

Formula

G.f.: 1/(1-2*x) - (1+x^3+x^4)/(1-2*x+x^3-x^4-x^5) = x^5/((-1+2*x)*(x^5+x^4-x^3+2*x-1)).
Equals 2^n - A210021(n).
a(n) = Sum_{k>0} A277678(n,k). - Alois P. Heinz, Oct 26 2016
Showing 1-2 of 2 results.