cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277687 a(n) is the number of nonisomorphic trees on n vertices whose chromatic symmetric function in the p basis has a nonzero coefficient for each possible term.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 2, 4, 2, 18, 2, 29, 5, 8, 9, 97, 7, 148, 9, 25, 20
Offset: 1

Views

Author

Caleb Ji, Sam Heil, Oct 26 2016

Keywords

Comments

The path graph is always included in this count.
The chromatic symmetric function is defined in Stanley (1995). By theorem 2.5 of that reference we can give an equivalent definition of this sequence. Say that a forest corresponds to the partition whose parts are the sizes of the trees in the forest. Then a(n) counts the trees on n vertices for which a forest corresponding to any partition of n can be produced by deleting edges from the tree. - Peter J. Taylor, Sep 03 2021

Examples

			For n = 5 there are three trees, but a(5) = 2 because the star tree cannot be split into a tree of size 2 and a tree of size 3. - _Peter J. Taylor_, Sep 03 2021
		

Crossrefs

Cf. A277686.

Extensions

a(16)-a(22) from Peter J. Taylor, Sep 03 2021