cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277330 a(0)=1, a(1)=2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).

Original entry on oeis.org

1, 2, 3, 6, 5, 2, 15, 30, 7, 10, 3, 30, 35, 2, 105, 210, 11, 70, 21, 30, 5, 10, 105, 42, 77, 70, 3, 210, 385, 2, 1155, 2310, 13, 770, 231, 30, 55, 70, 105, 6, 7, 2, 21, 42, 385, 10, 165, 66, 143, 110, 231, 210, 5, 70, 1155, 66, 1001, 770, 3, 2310, 5005, 2, 15015, 30030, 17, 10010, 3003, 30, 715, 770, 105, 66, 91, 154, 231, 6, 385, 70, 15, 42, 11, 14, 3, 42, 55, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 27 2016

Keywords

Comments

Each term is a squarefree number, A005117.

Crossrefs

Cf. A023758 (positions where coincides with A260443).
Cf. A277701, A277712, A277713 for the positions of 2's, 3's and 6's in this sequence, which are also the first three rows of array A277710.
Cf. also A255483.

Formula

a(0) = 1, a(1) = 2, a(2n) = A003961(a(n)), a(2n+1) = lcm(a(n),a(n+1))/gcd(a(n),a(n+1)).
Other identities. For all n >= 0:
a(n) = A007913(A260443(n)).
a(n) = A019565(A264977(n)), A048675(a(n)) = A264977(n).
A055396(a(n)) = A277707(A260443(n)) = A001511(n).

A277697 a(n) = index of the least unitary prime divisor of n or 0 if no such prime-divisor exists.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 0, 0, 1, 5, 2, 6, 1, 2, 0, 7, 1, 8, 3, 2, 1, 9, 2, 0, 1, 0, 4, 10, 1, 11, 0, 2, 1, 3, 0, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 0, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 0, 3, 1, 19, 7, 2, 1, 20, 0, 21, 1, 2, 8, 4, 1, 22, 3, 0, 1, 23, 2, 3, 1, 2, 5, 24, 1, 4, 9, 2, 1, 3, 2, 25, 1, 5, 0, 26, 1, 27, 6, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2016

Keywords

Examples

			For n = 8 = 2*2*2, none of the prime divisors are unitary, thus a(8) = 0.
For n = 20 = 2*2*5 = prime(1)^2 * prime(3), the prime divisor 2 is not unitary, but 5 (= prime(3)) is, thus a(20) = 3.
For n = 36 = 2*2*3*3, none of the prime divisors are unitary, thus a(36) = 0.
		

Crossrefs

Cf. A001694 (positions of zeros).
Cf. also A080368, A277698, A277707.

Programs

  • Mathematica
    Table[If[Length@ # == 0, 0, PrimePi@ First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* Michael De Vlieger, Oct 30 2016 *)
  • PARI
    a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(primepi(f[i, 1])))); 0;} \\ Amiram Eldar, Jul 28 2024
  • Python
    from sympy import factorint, primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a028234(n):
        f = factorint(n)
        return 1 if n==1 else n/(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a(a028234(n)) # Indranil Ghosh, May 15 2017
    
  • Scheme
    (definec (A277697 n) (cond ((= 1 n) 0) ((= 1 (A067029 n)) (A055396 n)) (else (A277697 (A028234 n)))))
    

Formula

a(1) = 0; for n > 1, if A067029(n) = 1, then a(n) = A055396(n), otherwise a(n) = a(A028234(n)).

A277708 a(n) = Least prime divisor of n with an odd exponent, or 1 if n is a perfect square.

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 2, 1, 2, 11, 3, 13, 2, 3, 1, 17, 2, 19, 5, 3, 2, 23, 2, 1, 2, 3, 7, 29, 2, 31, 2, 3, 2, 5, 1, 37, 2, 3, 2, 41, 2, 43, 11, 5, 2, 47, 3, 1, 2, 3, 13, 53, 2, 5, 2, 3, 2, 59, 3, 61, 2, 7, 1, 5, 2, 67, 17, 3, 2, 71, 2, 73, 2, 3, 19, 7, 2, 79, 5, 1, 2, 83, 3, 5, 2, 3, 2, 89, 2, 7, 23, 3, 2, 5, 2, 97, 2, 11, 1, 101, 2, 103, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2016

Keywords

Crossrefs

Cf. A000290 (after its initial zero-term gives the positions of ones in this sequence).
Cf. also A277698.

Programs

  • PARI
    a(n) = my(f = factor(core(n))); if (!#f~, 1, vecmin(f[,1])); \\ Michel Marcus, Oct 30 2016
    
  • Python
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    def lpf(n): return 1 if n==1 else primefactors(n)[0]
    def a(n): return lpf(core(n)) # Indranil Ghosh, May 17 2017

Formula

a(n) = A008578(1+A277707(n)).
a(n) = A020639(A007913(n)).
Showing 1-3 of 3 results.