cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277751 Number T(n,k) of binary words of length n containing exactly k (possibly overlapping) occurrences of the subword 01101; triangle T(n,k), n>=0, k=0..max(0,floor((n-2)/3)), read by rows.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 1, 60, 4, 116, 12, 225, 30, 1, 436, 72, 4, 845, 166, 13, 1637, 375, 35, 1, 3172, 828, 92, 4, 6146, 1802, 230, 14, 11909, 3872, 562, 40, 1, 23075, 8243, 1333, 113, 4, 44711, 17404, 3106, 300, 15, 86633, 36501, 7114, 778, 45, 1, 167863, 76104
Offset: 0

Views

Author

Alois P. Heinz, Oct 28 2016

Keywords

Examples

			Triangle T(n,k) begins:
:     1;
:     2;
:     4;
:     8;
:    16;
:    31,   1;
:    60,   4;
:   116,  12;
:   225,  30,  1;
:   436,  72,  4;
:   845, 166, 13;
:  1637, 375, 35, 1;
:  3172, 828, 92, 4;
		

Crossrefs

Columns k=0-2 give: A209888, A317780, A317781.
Row sums give A000079.

Programs

  • Maple
    b:= proc(n, t) option remember; expand(
          `if`(n=0, 1,     b(n-1, [2, 2, 2, 5, 2][t])+
          `if`(t=5, x, 1)* b(n-1, [1, 3, 4, 1, 3][t])))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
    seq(T(n), n=0..20);
    # second Maple program:
    gf:= k-> `if`(k=0, (x+1)*(x^2-x+1), x^5*(x^3*(x-1)^2)^(k-1))
                       /(x^5-2*x^4+x^3-2*x+1)^(k+1):
    T:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=0..max(0, floor((n-2)/3))), n=0..20);
  • Mathematica
    b[n_, t_] := b[n, t] = Expand[
         If[n==0, 1,     b[n-1, {2, 2, 2, 5, 2}[[t]]] +
         If[t==5, x, 1]* b[n-1, {1, 3, 4, 1, 3}[[t]]]]];
    T[n_] := CoefficientList[b[n, 1], x];
    T /@ Range[0, 20] // Flatten (* Jean-François Alcover, Feb 22 2021, after first Maple program *)

Formula

G.f. of column k=0: (x+1)*(x^2-x+1)/(x^5-2*x^4+x^3-2*x+1); g.f. of column k>0: x^5*(x^3*(x-1)^2)^(k-1)/(x^5+x^4-x^3+2*x-1)^(k+1).
Sum_{k>=0} k * T(n,k) = A001787(n-4) for n > 3.