cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317669 Number of equivalence classes of binary words of length n for the subword 10110.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 22, 31, 44, 61, 86, 121, 169, 238, 334, 468, 658, 923, 1295, 1819, 2552, 3582, 5029, 7057, 9906, 13905, 19515, 27393, 38449, 53965, 75748, 106319, 149228, 209460, 293996, 412653, 579204, 812968, 1141085, 1601632, 2248049
Offset: 0

Views

Author

Alois P. Heinz, Aug 03 2018

Keywords

Comments

Two binary words of the same length are equivalent with respect to a given subword if they have equal sets of occurrences of this subword.

Examples

			a(11) = 16, the positions of subword 10110 in words of the 16 classes are given by the sets: {}, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {0,3}, {1,4}, {0,5}, {2,5}, {0,6}, {1,6}, {3,6}, {0,3,6}, where 0 indicates the leftmost position. Example words for class {2,5} are xx10110110x, where each x can be replaced by 0 or by 1 and both occurrences of the subword overlap. There is only one word in class {0,3,6}: 10110110110.  Class {1,6} has two words: 01011010110 and 11011010110.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n<0, 0, `if`(n=0, 1,
          add(b(n-j, j), j={1, 5, `if`(t=1, 1, 3)})))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..60);
    # second Maple program:
    a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
              <0|0|0|0|1>, <1|-1|1|0|1>>^n.<<[1$5][]>>)[1$2]:
    seq(a(n), n=0..60);
    # third Maple program:
    a:= proc(n) option remember; `if`(n<5, 1, a(n-1) +a(n-3) -a(n-4) +a(n-5)) end:
    seq(a(n), n=0..60);
  • Mathematica
    LinearRecurrence[{1, 0, 1, -1, 1}, {1, 1, 1, 1, 1}, 100] (* Jean-François Alcover, Sep 23 2022 *)

Formula

G.f.: (x^3-1)/(x^5-x^4+x^3+x-1).
a(n) = a(n-1) +a(n-3) -a(n-4) +a(n-5) for n >= 5, a(n) = 1 for n < 5.

A209888 Number of binary words of length n containing no subword 01101.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 116, 225, 436, 845, 1637, 3172, 6146, 11909, 23075, 44711, 86633, 167863, 325256, 630226, 1221144, 2366125, 4584673, 8883398, 17212733, 33351899, 64623621, 125216632, 242623433, 470114310, 910907331, 1765000872, 3419917668, 6626533192
Offset: 0

Views

Author

Alois P. Heinz, Mar 14 2012

Keywords

Comments

Notice that the proper suffix 01 of 01101 is also a prefix of 01101. If instead of 01101 subword 01011 is not allowed, we get A107066 with A107066(n) < a(n) for all n >= 8. Word 01101101 of length 8 is the smallest binary word having two or more copies of 01101.

Examples

			a(6) = 60 because among the 2^6 = 64 binary words of length 6 only 4, namely 001101, 011010, 011011 and 101101 contain the subword 01101.
		

Crossrefs

Column 22 of A209972.
Column k=0 of A277751.

Programs

  • Maple
    a:= n-> (Matrix(5, (i, j)-> `if`(i=j-1, 1, `if`(i=5, [-1, 2, -1, 0, 2][j], 0)))^n. <<1, 2, 4, 8, 16>>)[1, 1]: seq(a(n), n=0..40);
  • Mathematica
    CoefficientList[Series[(x + 1)*(x^2 - x + 1)/(x^5 - 2*x^4 + x^3 - 2*x + 1), {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 28 2017 *)
    LinearRecurrence[{2,0,-1,2,-1},{1,2,4,8,16},40] (* Harvey P. Dale, Sep 17 2017 *)

Formula

G.f.: (x+1)*(x^2-x+1) / (x^5-2*x^4+x^3-2*x+1).
a(n) = 2^n if n<5, and a(n) = 2*(a(n-1)+a(n-4)) -a(n-3) -a(n-5) otherwise.

A317780 Number of binary words of length n containing exactly one occurrence of the subword 01101.

Original entry on oeis.org

1, 4, 12, 30, 72, 166, 375, 828, 1802, 3872, 8243, 17404, 36501, 76104, 157888, 326126, 671054, 1376090, 2813303, 5735864, 11665683, 23672756, 47940341, 96904034, 195540645, 393953334, 792531849, 1592204570, 3194717138, 6402570594, 12817347502, 25632678412
Offset: 5

Views

Author

Alois P. Heinz, Aug 06 2018

Keywords

Crossrefs

Column k=1 of A277751.

Formula

G.f.: x^5/(x^5-2*x^4+x^3-2*x+1)^2.

A317781 Number of binary words of length n containing exactly two (possibly overlapping) occurrences of the subword 01101.

Original entry on oeis.org

1, 4, 13, 35, 92, 230, 562, 1333, 3106, 7114, 16090, 35968, 79637, 174812, 380903, 824469, 1774122, 3797436, 8089574, 17158409, 36250415, 76309260, 160102335, 334877607, 698461293, 1452964434, 3015112497, 6242510786, 12896941964, 26591579894, 54724833014
Offset: 8

Views

Author

Alois P. Heinz, Aug 06 2018

Keywords

Crossrefs

Column k=2 of A277751.

Formula

G.f.: x^8*(x-1)^2/(x^5-2*x^4+x^3-2*x+1)^3.
Showing 1-4 of 4 results.