cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277409 a(n) equals the coefficient of x^n in (1 - log(1-x))^n! for n>=0.

Original entry on oeis.org

1, 1, 2, 37, 13921, 207504608, 193499235977786, 16390183551007874514674, 173238206541606827885872411575542, 300679807333480520851459179939426369369129736, 109110688416565628491410454990885244124132946665282604804584, 10269686361506102165964632192322962717141565478713927846953403915348531319392, 304583662721691547994723721287871614789227410136168948343531184046989057630321931742841867554016
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2016

Keywords

Examples

			Illustration of initial terms.
a(0) = 1;
a(1) = [x^1] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^1! = 1 ;
a(2) = [x^2] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^2!, or
a(2) = [x^2] (1 + 2*x + 2*x^2 + 5/3*x^3 + 17/12*x^4 +...) = 2 ;
a(3) = [x^3] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^3!, or
a(3) = [x^3] (1 + 6*x + 18*x^2 + 37*x^3 + 241/4*x^4 +...) = 37 ;
a(4) = [x^4] (1 + x + x^2/2 + x^3/3 + x^4/4 +...)^4!, or
a(4) = [x^4] (1 + 24*x + 288*x^2 + 2308*x^3 + 13921*x^4 +...) = 13921 ;
...
a(n) = [x^n] (1 + x + x^2/2 + x^3/3 + x^4/4 +...+ x^k/k +...)^n! ;
...
The coefficients of x^k, k=0..n, in (1 - log(1-x))^n! forms the triangle T(n,k):
[1];
[1, 1];
[1, 2, 2];
[1, 6, 18, 37];
[1, 24, 288, 2308, 13921];
[1, 120, 7200, 288020, 8642405, 207504608];
[1, 720, 259200, 62208120, 11197526430, 1612462485648, 193499235977786];
[1, 5040, 12700800, 21337344840, 26885057673810, 27100144537250736, 22764130374754974422, 16390183551007874514674];
[1, 40320, 812851200, 10924720134720, 110121179161192080, 888017192033323164288, 5967475567171901800336816, 34372659584069639646227206672, 173238206541606827885872411575542]; ...
in which the main diagonal forms this sequence: a(n) = T(n,n),
where
T(n,k) = Sum_{j=0..k} binomial(n!, j) * j!/k! * (-1)^(k-j) * Stirling1(k, j).
		

Crossrefs

Cf. A277759.

Programs

  • PARI
    {a(n) = polcoeff( (1 - log(1-x +x*O(x^n)))^n!, n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = sum(k=0,n, binomial(n!,k) * k!/n! * (-1)^(n-k) * stirling(n,k,1) )}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {T(n,k) = sum(j=0,k, binomial(n!, j) * j!/k! * (-1)^(k-j) * stirling(k, j, 1) )}
    for(n=0,20,print1(T(n,n),", "))

Formula

a(n) = Sum_{k=0..n} binomial(n!,k) * k!/n! * (-1)^(n-k) * Stirling1(n,k).

A308565 a(n) = Sum_{k=0..n} binomial(n,k) * Stirling1(n,k) * k!.

Original entry on oeis.org

1, 1, 0, -6, -12, 140, 1020, -5208, -117264, -2448, 17756640, 117905040, -3177424800, -56997933408, 523176632160, 25824592321920, 31907065317120, -12118922683971840, -151839867298498560, 5619086944920958464, 172859973799199892480, -1989399401447725854720, -170925579909303883614720
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] StirlingS1[n, k] k!, {k, 0, n}], {n, 0, 22}]
    Table[n! SeriesCoefficient[(1 + Log[1 + x])^n, {x, 0, n}], {n, 0, 22}]

Formula

a(n) = n! * [x^n] (1 + log(1 + x))^n.

A382830 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * |Stirling1(n,k)| * k!.

Original entry on oeis.org

1, 1, 8, 102, 1804, 40890, 1131108, 36948240, 1391945616, 59411849040, 2833582748160, 149347596487056, 8620256620495584, 540775669746661440, 36636074309252234880, 2665704585421541790720, 207329122282259073044736, 17165075378189396045777280, 1507206260097615729874083840
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + k - 1, k] Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[1/(1 + Log[1 - x])^n, {x, 0, n}], {n, 0, 18}]

Formula

a(n) = n! * [x^n] 1 / (1 + log(1 - x))^n.
a(n) ~ LambertW(exp(2))^n * n^n / (sqrt(1 + LambertW(exp(2))) * exp(n) * (LambertW(exp(2)) - 1)^(2*n)). - Vaclav Kotesovec, Apr 06 2025
Showing 1-3 of 3 results.