A277793 Numbers k such that the arithmetic and geometric means of the divisors of k are both integers.
1, 49, 169, 361, 961, 1369, 1849, 3721, 4489, 5329, 6241, 8281, 9409, 10609, 11881, 14641, 16129, 17689, 19321, 22801, 24649, 26569, 32761, 37249, 39601, 44521, 47089, 49729, 52441, 58081, 61009, 67081, 73441, 76729, 80089, 87616, 90601, 94249, 97969, 109561, 113569, 121801, 134689
Offset: 1
Examples
a(2) = 49 because 49 has 3 divisors {1,7,49} therefore (1 + 7 + 49)/3 = 19 and (1*7*49)^(1/3) = 7 are both integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Divisor
- Wikipedia, Arithmetic number
- Index entries for sequences related to sums of divisors
Programs
-
Mathematica
Select[Range[140000], Divisible[DivisorSigma[1, #1], DivisorSigma[0, #1]] && Mod[DivisorSigma[0, #1], 2] == 1 & ] Select[Range[150000],AllTrue[{Mean[Divisors[#]],GeometricMean[ Divisors[ #]]}, IntegerQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Nov 21 2018 *)
Comments