A277804 Numbers n such that first digit of n divides n, last digit of n divides n, number of divisors of n divides n and phi(n) divides n, where phi(n) is the Euler totient function.
1, 2, 8, 12, 24, 36, 128, 288, 384, 864, 972, 1152, 1944, 3456, 6144, 6912, 13122, 18432, 26244, 31104, 62208, 69984, 209952, 279936, 294912, 497664, 839808, 884736, 1679616, 3538944, 4478976, 13436928, 22674816, 25165824, 31850496, 45349632
Offset: 1
Examples
a(5) = 24 because 24/2 = 12, 24/4 = 6, 24 has 8 divisors {1,2,3,4,6,8,12,24}, 24/8 = 3, phi(24) = 8 {1,5,7,11,13,17,19,23} and 24/8 = 3 (all are an integers).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..43
- Index to divisibility sequences
Programs
-
Mathematica
Select[Range[50000000], Divisible[#1, First[IntegerDigits[#1]]] && Divisible[#1, Last[IntegerDigits[#1]]] && Divisible[#1, DivisorSigma[0, #1]] && Divisible[#1, EulerPhi[#1]] & ]
Extensions
a(24) - a(36) added by G. C. Greubel, Nov 02 2016
Comments