cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277871 a(n) = Sum_{i=0..n+1} binomial(2*n-i,n-i+1)*Catalan(i).

Original entry on oeis.org

1, 4, 16, 66, 279, 1203, 5275, 23474, 105853, 483108, 2229253, 10390691, 48879588, 231879456, 1108473015, 5335987930, 25849521109, 125945214309, 616833862018, 3035286848660, 14999774773110, 74413424196360, 370463714276625, 1850251796668899
Offset: 0

Views

Author

Vladimir Kruchinin, Nov 02 2016

Keywords

Comments

T(2*n+1,n) is diagonal of triangle A125177.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*i, i]*Binomial[2*n-i, n-i+1]/(i+1), {i, 0, n+1}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 05 2016 *)
  • Maxima
    a(n):=sum((binomial(2*i,i)*binomial(2*n-i,n-i+1))/(i+1),i,0,n+1);
    
  • PARI
    x='x+O('x^50); Vec((4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x) \\ G. C. Greubel, Apr 09 2017

Formula

G.f.: (4*x*(1-sqrt(1-2*(1-sqrt(1-4*x)))))/(1-sqrt(1-4*x))^3/sqrt(1-4*x)-1/x.
a(n) ~ 2^(4*n+1/2) / (sqrt(Pi) * n^(3/2) * 3^(n-3/2)). - Vaclav Kotesovec, Nov 05 2016