cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A277892 a(n) = A001222(A048675(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 1, 4, 2, 5, 2, 2, 2, 6, 1, 7, 2, 2, 1, 8, 1, 3, 2, 2, 2, 9, 1, 10, 1, 3, 2, 3, 2, 11, 2, 2, 1, 12, 1, 13, 3, 3, 1, 14, 2, 4, 2, 3, 2, 15, 1, 3, 1, 3, 4, 16, 3, 17, 3, 3, 2, 4, 1, 18, 3, 3, 1, 19, 1, 20, 2, 2, 3, 4, 2, 21, 3, 3, 2, 22, 3, 3, 2, 2, 1, 23, 2, 4, 3, 5, 3, 4, 1, 24, 1, 3, 2, 25, 1, 26, 2, 2
Offset: 2

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

For n >= 3, a(n) = index of the row where n is located in array A277898.

Crossrefs

Left inverse of A065091.
Cf. A277319 (positions of ones).
Cf. A000040 (positions of records), A277900.
Cf. A277895 (ordinal transform from a(3) onward).

Programs

  • Mathematica
    A048675[n_] := If[n == 1, 0, Total[#[[2]]*2^(PrimePi[#[[1]]] - 1)& /@ FactorInteger[n]]];
    a[n_] := PrimeOmega[A048675[n]];
    Table[a[n], {n, 2, 105}] (* Jean-François Alcover, Jan 11 2022 *)
  • PARI
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2;
    A277892(n) = if(1==n,0,bigomega(A048675(n)));
    for(n=1, 3465, write("b277892.txt", n, " ", A277892(n)));
    
  • Python
    from sympy import factorint, primepi, primefactors
    def a001222(n): return 0 if n==1 else a001222(n//primefactors(n)[0]) + 1
    def a048675(n):
        if n==1: return 0
        f=factorint(n)
        return sum(f[i]*2**(primepi(i) - 1) for i in f)
    def a(n): return a001222(a048675(n))
    print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Jun 19 2017
  • Scheme
    (define (A277892 n) (if (= 1 n) 0 (A001222 (A048675 n))))
    

Formula

a(A019565(n)) = a(A260443(n)) = A001222(n).
For all n >= 2, a(A065091(n)) = n.

A277898 Square array A(r,c), where each row r lists all numbers k for which A277892(k) = r, read by downwards antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

3, 4, 5, 6, 9, 7, 8, 12, 25, 11, 10, 14, 33, 49, 13, 18, 15, 35, 58, 93, 17, 22, 16, 44, 65, 119, 169, 19, 24, 20, 45, 77, 121, 185, 287, 23, 30, 21, 51, 91, 124, 209, 289, 361, 29, 32, 26, 55, 95, 143, 214, 299, 437, 529, 31, 40, 27, 57, 106, 161, 221, 323, 473, 589, 802, 37, 42, 28, 60, 111, 177, 247, 327, 493, 611, 841, 934, 41
Offset: 3

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Comments

Permutation of natural numbers larger than 2.

Examples

			The top left corner of the array:
   3,    4,    6,    8,   10,   18,   22,   24,   30,   32
   5,    9,   12,   14,   15,   16,   20,   21,   26,   27
   7,   25,   33,   35,   44,   45,   51,   55,   57,   60
  11,   49,   58,   65,   77,   91,   95,  106,  111,  115
  13,   93,  119,  121,  124,  143,  161,  177,  187,  203
  17,  169,  185,  209,  214,  221,  247,  254,  301,  305
  19,  287,  289,  299,  323,  327,  391,  393,  398,  403
  23,  361,  437,  473,  493,  551,  565,  629,  633,  685
  29,  529,  589,  611,  667,  713,  779,  817,  889,  893
  31,  802,  841,  842,  851,  899,  901,  989, 1073, 1081
  37,  934,  961, 1121, 1147, 1154, 1189, 1227, 1271, 1293
  41, 1333, 1369, 1403, 1437, 1517, 1538, 1591, 1643, 1761
  43, 1681, 1739, 1763, 1927, 1943, 2183, 2257, 2263, 2302
  47, 1754, 1849, 2021, 2173, 2201, 2279, 2501, 2623, 2747
  53, 2209, 2491, 2537, 2594, 2643, 2701, 2773, 2881, 3053
		

Crossrefs

Transpose: A277897.
Row 1: A277319.
Column 1: A065091, column 2: A277900.
Cf. A277892 (index of the row where n is located), A277895 (of the column).

Programs

Formula

A(r,1) = A065091(r); for c > 1, A(r,c) = A277893(A(r,c-1)).

A277894 a(n) = the largest k < n for which A277892(k) = A277892(n), 0 if no such number exists, a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 4, 0, 6, 5, 8, 0, 9, 0, 12, 14, 15, 0, 10, 0, 16, 20, 18, 0, 22, 7, 21, 26, 27, 0, 24, 0, 30, 25, 28, 33, 34, 0, 36, 38, 32, 0, 40, 0, 35, 44, 42, 0, 39, 11, 48, 45, 50, 0, 46, 51, 54, 55, 49, 0, 57, 0, 60, 62, 52, 58, 56, 0, 63, 68, 66, 0, 70, 0, 64, 74, 69, 65, 75, 0, 76, 80, 78, 0, 81, 84, 82, 86, 72, 0, 87, 77, 85, 13, 92, 91, 88, 0
Offset: 0

Views

Author

Antti Karttunen, Nov 08 2016

Keywords

Crossrefs

Cf. A008578 (gives the positions of zeros after a(0)).

Programs

  • Scheme
    (define (A277894 n) (cond ((<= n 2) 0) (else (let ((v (A277892 n))) (let loop ((k (- n 1))) (cond ((= 1 k) 0) ((= (A277892 k) v) k) (else (loop (- k 1)))))))))

Formula

For n >= 3, a(A277893(n)) = n.

A277896 a(n) = the least k > n for which A048675(k) = A048675(n), 0 if no such number exists (when n is a power of 2).

Original entry on oeis.org

0, 0, 4, 0, 9, 8, 25, 0, 12, 18, 49, 16, 121, 50, 20, 0, 169, 24, 289, 27, 28, 98, 361, 32, 45, 242, 36, 75, 529, 40, 841, 0, 44, 338, 63, 48, 961, 578, 52, 54, 1369, 56, 1681, 147, 60, 722, 1849, 64, 175, 90, 68, 363, 2209, 72, 99, 150, 76, 1058, 2809, 80, 3481, 1682, 84, 0, 117, 88, 3721, 507, 92, 126, 4489, 96, 5041, 1922, 100, 867, 275
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2016

Keywords

Comments

Apart from zeros, a permutation of A013929.

Crossrefs

Numbers not in this sequence: A005117 (A019565).

Programs

  • Scheme
    (define (A277896 n) (if (= 1 (A209229 n)) 0 (let ((v (A048675 n))) (let loop ((k (+ 1 n))) (if (= (A048675 k) v) k (loop (+ 1 k)))))))

Formula

a(A000079(n)) = 0.
For all n, except powers of two, a(n) >= A277893(n).

A277900 Column 2 of A277898; position of the second occurrence of n in A277892.

Original entry on oeis.org

4, 9, 25, 49, 93, 169, 287, 361, 529, 802, 934, 1333, 1681, 1754, 2209, 2809, 2966, 3482, 4453, 5041, 5329, 6241, 5378, 6374, 9167
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2016, terms a(18)-a(25) obtained from the 10000 term b-file of A277892 computed by Hans Havermann

Keywords

Comments

a(n) = the second smallest number k for which A277892(k) = n, where A277892(n) = the number of prime divisors (counted with multiplicity) of A048675(n).
Note that the sequence is not monotonic: a(22) = 6241 and a(23) = 5378.

Examples

			A277892[2..4] = [0, 1, 1], thus as the second 1 occurs at A277892(4), a(1) = 4.
A277892[5..9] = [2, 1, 3, 1, 2], thus as the second 2 occurs at A277892(9), a(2) = 9.
		

Crossrefs

Column 2 of A277898.
Cf. A001248 (an upper bound), A048675, A065091, A277892, A277893.

Programs

Formula

a(n) = A277893(A065091(n)).
a(n) <= A001248(n).
Showing 1-5 of 5 results.