cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277912 Expansion of ((Product_{n>=1} (1 - x^(11*n))/(1 - x^n)^11) - 1)/11 in powers of x.

Original entry on oeis.org

0, 1, 7, 38, 175, 714, 2653, 9139, 29563, 90650, 265401, 746142, 2023566, 5314008, 13554912, 33673525, 81654104, 193646588, 449903128, 1025532912, 2296519589, 5058078488, 10968488747, 23440057192, 49406752403, 102792264765, 211242738976, 429066735314, 861868377262, 1713014236294, 3370525567099
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2016

Keywords

Examples

			G.f. = x + 7*x^2 + 38*x^3 + 175*x^4 + 714*x^5 + 2653*x^6 + ...
		

Crossrefs

Cf. Expansion of ((Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^k) - 1)/k in powers of x: A014968 (k=2), A277968 (k=3), A277974 (k=5), A160549 (k=7), this sequence (k=11).

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[(Product[(1 - x^(11*j))/(1 - x^j)^11, {j, 1, nmax}] - 1)/11, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^11] / QPochhammer[ x]^11 - 1) / 11, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^11 + A) / eta(x + A)^11 - 1) / 11, n))}; /* Michael Somos, Nov 13 2016 */
    
  • PARI
    x='x+O('x^66); concat([0],Vec(eta(x^11)/eta(x)^11-1)/11) \\ Joerg Arndt, Nov 27 2016

Formula

G.f.: ((Product_{n>=1} (1 - x^(11*n))/(1 - x^n)^11) - 1)/11.
a(n) ~ 5^(11/4) * exp(4*Pi*sqrt(5*n/11)) / (sqrt(2)*11^(17/4)*n^(13/4)). - Vaclav Kotesovec, Nov 10 2016