A277958 Expansion of Product_{n>=1} (1 - x^(7*n))^7/(1 - x^n)^8 in powers of x.
1, 8, 44, 192, 726, 2464, 7704, 22521, 62281, 164252, 415796, 1015334, 2401462, 5519640, 12363062, 27047913, 57917068, 121588588, 250638216, 507974950, 1013409244, 1992161935, 3862461694, 7392045512, 13975011909, 26116935550, 48277368020, 88320521108, 159993054081
Offset: 0
Keywords
Examples
G.f.: 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 + 7704*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- Wikipedia, Ramanujan's congruences
Programs
-
Mathematica
nmax = 20; CoefficientList[Series[Product[(1 - x^(7*k))^7 /(1 - x^k)^8 , {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)
Formula
G.f.: Product_{n>=1} (1 - x^(7*n))^7/(1 - x^n)^8.
a(n) ~ exp(Pi*sqrt(98*n/21)) / (1372*sqrt(3)*n). - Vaclav Kotesovec, Nov 10 2017