A277968 Expansion of ((Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3) - 1)/3 in powers of x.
0, 1, 3, 7, 16, 33, 66, 125, 231, 412, 720, 1227, 2056, 3380, 5478, 8745, 13792, 21483, 33114, 50510, 76344, 114356, 169920, 250503, 366666, 532975, 769758, 1104847, 1576640, 2237331, 3158208, 4435502, 6199479, 8624820, 11946096, 16475880, 22630864, 30962990
Offset: 0
Keywords
Examples
G.f. = x + 3*x^2 + 7*x^3 + 16*x^4 + 33*x^5 + 66*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[(Product[(1 - x^(3*j))/(1 - x^j)^3, {j, 1, nmax}] - 1)/3, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3] / QPochhammer[ x]^3 - 1) / 3, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
-
PARI
first(n)=my(x='x); concat([0], Vec((prod(k=1, n, (1-x^(3*k))/(1-x^k)^3, 1+O(x^(n+1)))-1)/3)) \\ Charles R Greathouse IV, Nov 07 2016
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^3 + A) / eta(x + A)^3 - 1) / 3, n))}; /* Michael Somos, Nov 13 2016 */
Formula
a(n) = A273845(n)/3, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^3) - 1)/3.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (27*sqrt(2)*n^(5/4)). - Vaclav Kotesovec, Nov 10 2016