A277974 Expansion of ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5 in powers of x.
0, 1, 4, 13, 38, 101, 252, 594, 1340, 2907, 6104, 12447, 24744, 48068, 91476, 170838, 313646, 566824, 1009628, 1774290, 3079338, 5282172, 8962288, 15050848, 25032420, 41255101, 67406472, 109236685, 175654072, 280371510, 444372452, 699579062, 1094289564
Offset: 0
Keywords
Examples
G.f. = x + 4*x^2 + 13*x^3 + 38*x^4 + 101*x^5 + 252*x^6 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[(Product[(1 - x^(5*j))/(1 - x^j)^5, {j, 1, nmax}] - 1)/5, {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2016 *) a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x]^5 - 1) / 5, {x, 0, n}]; (* Michael Somos, Nov 13 2016 *)
-
PARI
x='x+O('x^66); concat([0],Vec(eta(x^5)/eta(x)^5-1)/5) \\ Joerg Arndt, Nov 27 2016
Formula
a(n) = A277212(n)/5, n > 0.
G.f.: ((Product_{n>=1} (1 - x^(5*n))/(1 - x^n)^5) - 1)/5.
a(n) ~ exp(4*Pi*sqrt(n/5)) / (sqrt(2) * 5^(11/4) * n^(7/4)). - Vaclav Kotesovec, Nov 10 2016