cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277983 a(n) = 54*n^2 - 78*n + 36.

Original entry on oeis.org

36, 12, 96, 288, 588, 996, 1512, 2136, 2868, 3708, 4656, 5712, 6876, 8148, 9528, 11016, 12612, 14316, 16128, 18048, 20076, 22212, 24456, 26808, 29268, 31836, 34512, 37296, 40188, 43188, 46296, 49512, 52836, 56268, 59808, 63456, 67212, 71076, 75048, 79128, 83316
Offset: 0

Views

Author

Emeric Deutsch, Nov 11 2016

Keywords

Comments

For n>=1, a(n) is the second Zagreb index of the triangular grid graph T[n] (see the West reference, p. 390). The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the triangular grid graph T[n] is M(T[n], x, y) = 6*x^2*y^4 + 3*(n-1)*x^4*y^4 +6*(n-2)*x^4*y^6+3*(n-2)*(n-3)*x^6*y^6/2.

References

  • D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.

Crossrefs

Cf. A153792.

Programs

  • Magma
    [54*n^2-78*n+36: n in [0..50]]; // Bruno Berselli, Nov 11 2016
    
  • Maple
    seq(54*n^2-78*n+36, n=0..40);
  • Mathematica
    Table[54 n^2 - 78 n + 36, {n, 0, 50}] (* Bruno Berselli, Nov 11 2016 *)
  • PARI
    a(n)=54*n^2-78*n+36 \\ Charles R Greathouse IV, Jun 17 2017
  • Sage
    [54*n^2-78*n+36 for n in range(50)] # Bruno Berselli, Nov 11 2016
    

Formula

O.g.f.: 12*(14*x^2 - 8*x + 3)/(1 - x)^3.
E.g.f.: 6*(9*x^2 - 4*x + 6)*exp(x). - Bruno Berselli, Nov 11 2016
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Jan 15 2022
a(n) = 12*A064225(n-1). - R. J. Mathar, Jul 22 2022