cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278024 Number of irreducible involutions of length n.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 37, 107, 341, 1141, 4021, 14831, 57017, 227617, 941305, 4020455, 17705753, 80215513, 373370329, 1782362219, 8716939229, 43615569829, 223069903933, 1164867074483, 6206075782925, 33702629832685, 186436337623597, 1049745170246327, 6012759489160241
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2016

Keywords

Comments

An involution x is irreducible if x(i+1) - x(i) <> 1 for all i < n. - Andrew Howroyd, May 06 2023

Examples

			The a(3) = 3 irreducible involutions are: 132, 213, 321.
The a(4) = 5 irreducible involutions are: 1324, 1432, 2143, 3214, 4321.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<7, [1$3, 3, 5, 13, 37][n+1],
          (n-7)*a(n-7)+3*(n-6)*a(n-6)+4*(n-5)*a(n-5)
         +(4*n-13)*a(n-4)+3*(n-3)*a(n-3)+(n-2)*a(n-2)-2*a(n-1))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 08 2023
  • PARI
    a(n)=sum(k=(n+2)\4, n\2, sum(j=0, k, (-1)^(k-j)*binomial(k-1,k-j)*binomial(2*j+1,n-2*k)*(2*j)!/(2^j*j!))) \\ Andrew Howroyd, May 08 2023

Formula

a(n) = Sum_{k=floor((n+2)/4)..floor(n/2)} Sum_{j=0..k} (-1)^(k-j) * binomial(k-1,k-j) * binomial(2*j+1,n-2*k) * (2*j)! / (2^j*j!). - Andrew Howroyd, May 08 2023

Extensions

a(0)-a(1) and a(10)-a(12) from Andrew Howroyd, May 06 2023
a(13)-a(18) from Joerg Arndt, May 08 2023
Terms a(19) and beyond from Andrew Howroyd, May 08 2023