A278071 Triangle read by rows, coefficients of the polynomials P(n,x) = (-1)^n*hypergeom( [n,-n], [], x), powers in descending order.
1, 1, -1, 6, -4, 1, 60, -36, 9, -1, 840, -480, 120, -16, 1, 15120, -8400, 2100, -300, 25, -1, 332640, -181440, 45360, -6720, 630, -36, 1, 8648640, -4656960, 1164240, -176400, 17640, -1176, 49, -1, 259459200, -138378240, 34594560, -5322240, 554400, -40320, 2016, -64, 1
Offset: 0
Examples
Triangle starts: . 1, . 1, -1, . 6, -4, 1, . 60, -36, 9, -1, . 840, -480, 120, -16, 1, . 15120, -8400, 2100, -300, 25, -1, . 332640, -181440, 45360, -6720, 630, -36, 1, ...
Links
- H. L. Krall and O. Fink, A New Class of Orthogonal Polynomials: The Bessel Polynomials, Trans. Amer. Math. Soc. 65, 100-115, 1949.
- Herbert E. Salzer, Orthogonal Polynomials Arising in the Numerical Evaluation of Inverse Laplace Transforms, Mathematical Tables and Other Aids to Computation, Vol. 9, No. 52 (Oct., 1955), pp. 164-177, (see p.174 and footnote 7).
Crossrefs
Programs
-
Maple
p := n -> (-1)^n*hypergeom([n, -n], [], x): ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(simplify(p(n)), x, termorder=reverse), n=0..8)]); # Alternatively the polynomials by recurrence: P := proc(n,x) if n=0 then return 1 fi; if n=1 then return x-1 fi; ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)); sort(expand(%)) end: for n from 0 to 6 do lprint(P(n,x)) od; # Or by generalized Laguerre polynomials: P := (n,x) -> n!*(-x)^n*LaguerreL(n,-2*n,-1/x): for n from 0 to 6 do simplify(P(n,x)) od;
-
Mathematica
row[n_] := CoefficientList[(-1)^n HypergeometricPFQ[{n, -n}, {}, x], x] // Reverse; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 12 2019 *) (* T(n,k)= *) t={};For[n=8,n>-1,n--,For[j=n+1,j>0,j--,PrependTo[t,(-1)^(j-n+1-Mod[n,2])*Product[(2*n-k)*k/(n-k+1),{k,j,n}]]]];t (* Detlef Meya, Aug 02 2023 *)
Formula
The P(n,x) are orthogonal polynomials. They satisfy the recurrence
P(n,x) = ((((4*n-2)*(2*n-3)*x+2)*P(n-1,x)+(2*n-1)*P(n-2,x))/(2*n-3)) for n>=2.
In terms of generalized Laguerre polynomials (see the Krall and Fink link):
P(n,x) = n!*(-x)^n*LaguerreL(n,-2*n,-1/x).