A278073 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 3.
1, 0, 1, 0, 1, 20, 0, 1, 168, 1680, 0, 1, 1364, 55440, 369600, 0, 1, 10920, 1561560, 33633600, 168168000, 0, 1, 87380, 42771456, 2385102720, 34306272000, 137225088000, 0, 1, 699048, 1160164320, 158411809920, 5105916816000, 54752810112000, 182509367040000
Offset: 0
Examples
Triangle begins: [1] [0, 1] [0, 1, 20] [0, 1, 168, 1680] [0, 1, 1364, 55440, 369600] [0, 1, 10920, 1561560, 33633600, 168168000]
Crossrefs
Programs
-
Maple
P := proc(m, n) option remember; if n = 0 then 1 else add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end: for n from 0 to 6 do PolynomialTools:-CoefficientList(P(3,n), x) od; # Alternatively: A278073_row := proc(n) 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)); expand(series(%,x,3*n+1)); (3*n)!*coeff(%,x,3*n); PolynomialTools:-CoefficientList(%,t) end: for n from 0 to 6 do A278073_row(n) od;
-
Mathematica
With[{m = 3}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 21, m}]]; Function[arg, CoefficientList[arg, t]] /@ % // Flatten
-
Sage
R = PowerSeriesRing(ZZ, 'x') x = R.gen().O(30) @cached_function def P(m, n): if n == 0: return R(1) return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n))) def A278073_row(n): return list(P(3, n)) for n in (0..6): print(A278073_row(n)) # Peter Luschny, Mar 24 2020
Formula
E.g.f.: 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)), nonzero terms.