A278104 Irregular triangle T(n,k) := A277648(n,k) for k = 1...A278102(n), read by rows.
1, 2, 1, 3, 2, 1, 4, 2, 5, 3, 2, 6, 4, 3, 2, 7, 4, 8, 5, 4, 3, 9, 6, 10, 7, 5, 11, 7, 12, 8, 6, 13, 9, 7, 5, 14, 9, 15, 10, 8, 6, 16, 11, 17, 12, 9, 18, 12, 19, 13, 10, 20, 14, 11, 8, 21, 14, 22, 15, 12, 9, 8, 23, 16, 13, 10, 9, 8, 24, 16, 13, 10, 9, 25, 17, 26, 18, 27, 19, 15, 28, 19
Offset: 1
Examples
The first 23 rows are: 1; 2, 1; 3, 2, 1; 4, 2; 5, 3, 2; 6, 4, 3, 2; 7, 4; 8, 5, 4, 3; 9, 6; 10, 7, 5; 11, 7; 12, 8, 6; 13, 9, 7, 5; 14, 9; 15, 10, 8, 6; 16, 11; 17, 12, 9; 18, 12; 19, 13, 10; 20, 14, 11, 8; 21, 14; 22, 15, 12, 9, 8; 23, 16, 13, 10, 9, 8;
References
- R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.
Links
Programs
-
Magma
A277647:=func
; A277648_row:=func A277647(n,k):k in[1..n^2]|IsSquarefree(k)]>; A278101_row:=func A277647(n,k)^2*k:k in[1..n^2]|IsSquarefree(k)]>; A278104_row:=func A277648_row(n)[1..j]:j in[1..#row-1]|row[j]le row[j+1]}select dec else[1]) where row is A278101_row(n) >; &cat[A278104_row(n):n in[1..23]]; -
Mathematica
Map[Last, #, {2}] &@ Map[TakeWhile[FoldList[Function[s, Boole[s < 0] {First@ #2, Last@ #2}][First@ #2 - First@ #1] &, #], Total@ # > 0 &] &, #] &@ Map[DeleteCases[#, {0, 0}] &, Table[Boole[SquareFreeQ@ k] {k #^2, #} &@ Floor[n/Sqrt@ k], {n, 32}, {k, n^2}] ] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
Comments