cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278144 Decimal expansion of (sqrt(Pi)/(2^(1/4)*Gamma(5/8)*Gamma(7/8)))^2.

Original entry on oeis.org

9, 0, 9, 1, 7, 2, 7, 9, 4, 5, 4, 6, 9, 2, 9, 7, 0, 0, 7, 3, 9, 7, 7, 8, 8, 5, 4, 2, 8, 2, 6, 5, 1, 2, 2, 5, 7, 2, 0, 5, 2, 7, 2, 9, 9, 5, 9, 2, 2, 0, 5, 2, 2, 8, 3, 8, 6, 4, 1, 4, 0, 2, 1, 8, 3, 7, 2, 2, 3, 6, 4, 8, 1, 1, 1, 2, 7, 1, 8, 9, 9, 3, 2, 3, 2, 5, 6, 7, 4, 0, 5, 7, 0, 5, 1, 3, 7, 9, 5, 3, 3, 7, 3
Offset: 0

Views

Author

Wolfdieter Lang, Nov 14 2016

Keywords

Comments

This is the value of hypergeometric([1/4,1/4],[1],-1)^2. See A278143/A241756 for the partial sums of the hypergeometric series hypergeometric([1/2/,1/2,1/2],[1,1],-1) which has this value due to Clausen's formula. See the Hardy reference, p. 106, eq. (7.4.4) where this value is written as (Gamma(9/8)/(Gamma(5/4)*Gamma(7/8)))^2.

Examples

			The value of the series 1 - (1/2)^3 + (1*3/(2*4))^3 - (1*3*5/(2*4*6))^3 + ... is 0.909172794546929700739778854282651225720527299592205228386414021837...
This is also the value of the series Sum_{n>=0} c(n) with c(n) = Sum_{k=0..n} f(k)*f(n-k), where f(0)=1 and f(k) = (-1)^k*(1*5*9 *** (4*k-3)/(4*8*12 *** (4*k)))^2, k >= 1 (self-convolution of the hypergeometric([1/4,1/4],[1],-1) series).
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.4, p. 34.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 106, eq. (7.4.4)

Crossrefs

Cf. A278143.

Programs

  • Magma
    pi:=Pi(RealField(110)); (Sqrt(pi)/(2^(1/4)*Gamma(5/8)*Gamma(7/8)))^2; // Felix Fröhlich, Nov 15 2016
  • Mathematica
    RealDigits[(Pi/Sqrt[2])*(1/(Gamma[5/8]*Gamma[7/8]))^2, 10, 50][[1]] (* G. C. Greubel, Jan 12 2017 *)
  • PARI
    (sqrt(Pi)/(2^(1/4)*gamma(5/8)*gamma(7/8)))^2 \\ Felix Fröhlich, Nov 15 2016
    

Formula

Equals hypergeometric([1/2/,1/2,1/2],[1,1],-1) = hypergeometric([1/4,1/4],[1],-1)^2 = Sum_{k>=0} (-1)^k*(risefac(k,1/2)/k!)^3, where risefac(x,m) = Product_{j =0..m-1} (x+j), and risefac(x,0) = 1.
Equals (Gamma(9/8)/(Gamma(5/4)*Gamma(7/8)))^2 = (sqrt(Pi)/(2^(1/4)*Gamma(5/8)*Gamma(7/8)))^2.
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)^3/64^k. - Amiram Eldar, Jul 04 2023
Equals Gamma(1/8)^4 * (2 - sqrt(2)) / (16 * Pi^2 * Gamma(1/4)^2). - Vaclav Kotesovec, Jul 04 2023