cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A278146 Decimal expansion of 2^(3/2) / (sqrt(Pi)*Gamma(3/4)^2).

Original entry on oeis.org

1, 0, 6, 2, 6, 7, 9, 8, 9, 9, 9, 1, 6, 8, 4, 3, 6, 5, 1, 1, 8, 2, 4, 9, 0, 1, 9, 5, 1, 0, 4, 5, 1, 2, 0, 9, 1, 0, 6, 2, 5, 4, 9, 9, 1, 8, 3, 2, 6, 0, 2, 0, 6, 9, 4, 2, 4, 1, 0, 5, 4, 8, 7, 4, 0, 7, 3, 3, 9, 6, 1, 1, 1, 2, 7, 1, 8, 2, 2, 8, 3, 6, 7, 4, 0, 2, 9, 9, 0, 9, 3, 7, 2, 0, 4, 0, 6, 3, 7, 4, 5, 8, 6, 7
Offset: 1

Views

Author

Wolfdieter Lang, Nov 15 2016

Keywords

Comments

This is the value of a series of Ramanujan, namely 1 + 9*(1/4)^4 + 17*(1*5/(4*8))^4 + 25*(1*5*9/(4*8*12))^4 + ... = Sum_{k>=0} (1+8*k)*(risefac(1/4,k)/k!)^4 where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 7, eq. (1.3) and p. 105, eq. (7.4.3) for s=1/4 (after division by s).
For the partial sums of this series see A278141/A278142.

Examples

			1.06267989991684365118249019510...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105.

Crossrefs

Programs

  • Mathematica
    First@ RealDigits@ N[2^(3/2)/(Sqrt[Pi] Gamma[3/4]^2), 104] (* Michael De Vlieger, Nov 15 2016 *)
    RealDigits[2^(3/2)/(Sqrt[Pi]*(Gamma[3/4])^2), 10, 50][[1]] (* G. C. Greubel, Jan 10 2017 *)
  • PARI
    2^(3/2)/(sqrt(Pi)*(gamma(3/4))^2) \\ G. C. Greubel, Jan 10 2017

Formula

2^(3/2) / (sqrt(Pi)*Gamma(3/4)^2).
Equals 2*A242439. - Hugo Pfoertner, Apr 26 2025